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ABSTRACT
We show that there are unimodal fitness functions and genetic al-
gorithm (GA) parameter settings where the GA, when initialized
with a random population, will not move close to the fitness peak
in a practically useful time period. When the GA is initialized with
a population close to the fitness peak, the GA will be able to stay
close to the fitness peak. Roughly speaking, the parameter settings
involve strong recombination, weak selection, and require muta-
tion. This “bistability” phenomenon has been previously investi-
gated with needle-in-the-haystack fitness functions, but this fitness,
when used with a GA with random initialization, requires a pop-
ulation size exponential in the string length for the GA to have
nontrivial behavior. We introduce sloping-plateau fitness functions
which show the bistability phenomenon and should scale to arbi-
trary string lengths. We introduce and use an unitation infinite pop-
ulation model to investigate the bistability phenomenon. For the
fitnesses and GAs considered in the paper, we show that the use of
crossover moves the GA to its fixed point faster in comparison to
the same GA without crossover.

Keywords
gentic algorithms, bistability, fixed point, stability, recombination,
crossover

1. INTRODUCTION
A major goal of GA theory is to understand the role of crossover

in genetic algorithms. This paper shows that there are situations
where crossover can lead to a GA staying far from the optimum of
a single-peak fitness function for a long time. This happens when
selection pressure is weak, recombination is strong, and mutation
is within a range that depends on the selection pressure. It is the
disruptive aspects of crossover and mutation that are responsible
for this slowdown. We introduce “sloping plateau” fitness func-
tions to illustrate these phenomena. We conjecture that there are
sloping-plateau fitness functions where a standard proportional se-
lection GA with strong recombination will require exponentially
many fitness evaluations to reach a population with many points on
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the plateau, whereas a corresponding GA without recombination
will reach this kind of population quickly.

This paper considers the maximization of pseudo-boolean func-
tions f : Ω −→ R

+
0 , where Ω = {0, 1}` denotes the space of

binary strings of length `. Such a function f is called function of
unitation if f(x) depends only on the number of ones in the binary
string x. We develop a unitation coarse graining of the standard
GA infinite population model with uniform crossover, and discus
the strengths and weaknesses of this and other infinite population
models. The unitation model is used in the analysis of examples
where crossover slows down convergence.

2. REVIEW OF PREVIOUS WORK
There has been much prior work on the role of crossover in GAs,

and we are only able to survey work that we feel is most relevant to
our work.

The building block hypothesis states that crossover in a GA works
to combine short low-order schemata (building blocks) into high-
fitness strings [5]. There are fitness functions (such as concatenated
trap functions [6]) where the building block hypothesis provides a
good explanation of how a GA works. There are other situations
where the building block hypothesis as stated above does not pro-
vide much useful insight.

Based on the building block hypothesis, Mitchell et al [10, 4]
proposed the Royal Road family of fitness functions. Their original
intention was to give examples of fitness functions where the GA
with crossover would work very well. However, they discovered
that a GA with crossover did not nearly as well as a hill climbing
algorithm that flips one bit on each move, and accepts new individu-
als with fitness equal to the current individual. (In other words, this
hill climber does a random walk when the fitness is flat.) Hitchhik-
ing was proposed as one explanation of why the GA did not do as
well as expected.

Suzuki and Iwasa [17] investigated the role of crossover in a
GA on a needle-in-the-haystack fitness (which they called a Babel-
like fitness). They developed approximate models for the time
Td that it takes a GA that starts with a population consisting of
a multiple copies of a single random string to reach a population
dominated by the needle string. (The needle string dominates the
population when it is over half of the population.) Their mod-
els assume linkage equilibrium1 and includes finite population ef-
fects. They modeled both uniform crossover and a version of multi-
1A population is at linkage equilibrium if the population distribu-
tion is determined by the order-1 schemata frequencies. In other
words, the frequency of a string is equal to the product of the corre-
sponding bit frequencies. For example, suppose that for 2 bits, the
frequency of 0∗ is 1/4 and the frequency of ∗0 is 1/3. Then the fre-
quencies of 00, 01, 10, 11 will be 1/12, 1/6, 1/4, 1/2 respectively.



point crossover. They defined the acceleration due to crossover as
Ad

cross = Td|without crossover
Td|with crossover

. They found that for appropriate muta-
tion and crossover rates, the acceleration due to crossover could be
large (up to about 11 for string length 12 and 70 for string length
20). However, when the crossover rate was too high, the domina-
tion time Td became very large. There was an interaction between
population size and mutation rate to achieve the highest accelera-
tion: as the population size increased, the mutation rate for highest
acceleration decreased. Their qualitative conclusions for this type
of fitness were:

• “The crossover rate should not be to high nor too low for fast
evolution.”

• “The mutation rate must be adjusted to a moderate value to
enhance evolutionary acceleration due to crossover.”

• “To achieve a large acceleration effect by crossover, the or-
der of the advantageous schemata to be created needs to be
sufficiently large.”

Ingo Wegener and his students have initiated a research program
of analyzing evolutionary computation algorithms as randomized
algorithms. Their results give rigorous bounds on the complexity
of some evolutionary algorithms on some fitness functions. Here
we discuss only those papers that relate to crossover.

Jansen and Wegener [8, 7, 9] have given carefully constructed
fitness functions where a GA with crossover can find the optimum
point in polynomial time (with high probability), whereas a muta-
tion based GA without crossover will require exponential time to
find the optimum. In these examples, crossover is able to jump a
large gap in the fitness by recombining strings on the edge of the
gap. This work suggests that crossover is most helpful at the end
of a run, and that building blocks are not necessarily short or low
order.

2.1 Bistability and related phenomena
Boerlijst et al [2] introduced bistability in the context of a model

of viral recombination. Bistability refers to a dynamical system
with two stable fixed points. In the context of evolutionary compu-
tation, bistability is the situation where a dynamical systems model
of a evolutionary computation algorithm applied to a single-peak
fitness landscape has two stable fixed points.

A tractable dynamical systems model of bistability was given
in [24, 23] for a genetic algorithm with proportional selection and
gene pool crossover. (Gene pool crossover is equivalent to an as-
sumption of linkage equilibrium, and is used in some estimation
of distribution algorithms such as UMDA [11] and PBIL [1].) In
the case of a needle-in-the-haystack fitness, the fixed points can
be found by solving a single-variable equation, and the stability of
fixed points also determined by a single variable equation. Thus,
these infinite population model results apply for all string lengths.
Gene pool crossover can be used as an approximation to uniform
crossover. This work was extended to tournament selection in [21].

In the cases investigated in [22, 23, 24, 21] one of the fixed points
will be close to a uniform population consisting of copies of the
best individual, and the other fixed point will be close to the pop-
ulation with equal representation of all strings in the search space
(the center of the simplex). In practical terms, this can mean that
when the GA is started with a random initial population, the algo-
rithm can get “stuck” near the center of the simplex fixed point and
take a very long time to move near to the fitness peak fixed point.
However, when started with a population near to the fitness peak
or the corresponding fixed point, the population can stay near this

fixed point for a long time. (Note that a GA with standard non-zero
mutation is exactly modeled by an ergodic Markov chain, and thus
the GA will eventually visit every possible population.)

As described above, Suzuki and Iwasa [17] found that the time
Td to domination went to “infinity” as the crossover rate increased.
The crossover rate at which this happens for uniform crossover, for
string length 12, and mutation rate 0.002 was correctly predicted in
[22].

This paper extends previous work bistability. Previous bistability
work emphasized the needle-in-the-haystack fitness function. A fi-
nite population GA with random initialization requires a population
size which is exponential in the string length to be influenced by the
needle string. Otherwise, the GA sees only a flat fitness landscape.
Thus, it is of interest to understand how bistability scales with string
length in a situation where the size of a finite population does not
increase exponentially with the string length.

2.2 An intuitive explanation of bistability
In a genetic algorithm, selection acts to increase the frequency of

more fit individuals. However, a source of variation is needed since
selection by itself does not introduce any new kinds of individuals.
Mutation and crossover both introduce new kinds of individuals,
but they do this at the expense of disrupting some of the more fit
individuals. When the bistability phenomenon prevents or slows
progress towards the optimum, it is because the disruptive proper-
ties of mutation and crossover are overwhelming selection.

In the following, we will consider the infinite population model
since this removes the necessity for considering genetic drift.

In the case of the needle-in-the-haystack fitness we can be more
specific. In this fitness, all strings have equal fitness except for the
all-zeros string which has a higher fitness. Selection will increase
the frequency of the all-zeros string which will increase the fre-
quency of the zero alleles.

Crossover does not change the expected allele frequencies. How-
ever, crossover does decrease the correlation between the alleles.
(In other words, crossover moves the population towards linkage
equilibrium.) Since the all-zeros string represents correlation be-
tween alleles, the frequency of the all-zeros string will be reduced
by crossover. However, since the frequency of the zero alleles was
increased by selection, even the most extreme crossover (namely
gene pool crossover) will not decrease the frequency of the all-
zeros string to less than what is was before selection. Thus, if there
is no mutation, there will be steady (but possibly slow) progress to-
wards a population consisting entirely of the all-zeros string. (The
results of [19] show that a no-mutation GA with proportional se-
lection on a single-peak fitness landscape can have only one stable
fixed point at the uniform population consisting of copies of the
optimal string.)

Mutation will drive the allele frequencies towards 1/2. If this
mutation pressure overcomes the combined effect of selection and
crossover then there will be no progress towards the optimal popu-
lation.

For a specific example, let’s consider a needle-in-the-haystack
fitness function where the needle (the all-zeros string) has fitness 6
and all other strings have fitness 1. Let the string length ` = 10.
Let C be the center of the simplex population with a weight of
2−` on every string, and let N be the needle string population with
weight 1 on the all-zeros string and 0 weight on all other strings.
Let P = 1

25
N + 24

25
C, and let Q = 1

20
N + 19

20
C. Figure 1 shows

the infinite population model average fitness trajectories starting at
P and Q. Starting at P the GA the fitness decreases to the fitness
of the center-of-the-simplex fixed point. In other words, the GA is
going downhill on the fitness landscape. This is very counterintu-
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Figure 1: Unitation Model Trajectories Needle Fitness, ` = 10

itive. On the other hand, starting at Q, which is a little closer to the
needle, fitness first decreases and then increases to the fitness of the
needle fixed point.

Prior work suggest several ways to avoid bistability. There is
always a range of mutation rates for bistability. Thus, either suffi-
ciently raising or lowering the mutation rate may move the GA out
of the bistable range. However, the lowest mutation rate for bista-
bility may be extremely small, and the highest may be impractically
large. Increasing the strength of selection may eliminate bistability.
For example, if the needle height is raised sufficiently in a GA that
uses proportional selection, bistability will be avoided. However,
for the needle-in-the-haystack fitness, GAs with binary tournament
selection and truncation selection have been shown to have bistabil-
ity. Sufficiently reducing the crossover rate or changing to a weaker
recombination (such as reducing the number of crossover points for
multi-point crossover) will avoid bistability.

3. A UNITIATION-BASED INFINITE POP-
ULATION MODEL FOR A GA

In this section we describe a “coarse-graining” of the standard
GA infinite population model over unitation classes. To do this, we
assume that the fitness function f is compatible with unitation, i.
e., we assume that if |x| = |y|, then f(x) = f(y). We also assume
uniform crossover. In addition, we need to assume that the initial
population satisfies the condition that all representatives of each
equivalence class are equally likely. The following is a discussion
of the need for this assumption.

3.1 Compatibility with Unitation
The infinite population model for the simple genetic algorithm

is described in detail in [18]. In this model, populations are repre-
sented as real vectors indexed by the search space Ω = {0, 1}`. If
p is such a population, px denotes the fraction of individuals in the
population which are the bit string x. The space of possible infinite
populations is the simplex Λ = {p ∈ R

2`

: px ≥ 0 and
P

px =
1}. (The finite populations of a particular size form a lattice of
points within the simplex.) The model is defined by a function
G : Λ −→ Λ where G(p) gives the expected next generation popu-
lation resulting from applying the GA to population p.

The unitation of a bit string is the number of ones in the string.
If x is a bit string, we will denote the number of ones in x by
|x|. Let the unitation equivalence relation ≡ on the search space
be defined by {0, 1}` by x ≡ y iff |x| = |y|. (Note that there
are ` + 1 equivalence classes corresponding to the unitations 0 to
`.) Let eΩ = Ω/≡ denote the set of unitation equivalence classes,
and let eΛ denote the space of populations from eΩ. (In other words,

eΛ = {p ∈ R
`+1 : pu ≥ 0 for all u ∈ eΩ and

P
pu = 1}.)

There is a natural linear “projection” from Λ to eΛ whose matrix Ξ
is defined by

Ξ[y],x =

(
1 if y ≡ x

0 otherwise

(Note that this definition does not depend on the equivalence class
representative y of the equivalence class [y].) For example, if ` =
2,

Ξ =

2
4

1 0 0 0
0 1 1 0
0 0 0 1

3
5

Assuming a fitness function of unitation, our objective is to de-
fine an infinite population model eG : eΛ −→ eΛ that takes popula-
tions over unitation classes to populations over unitation classes. It
would be nice if the map eG was compatible with ≡ in the sense that
the following diagram commuted:

Λ
G

−−−−−→ Λ

Ξ

??y
??yΞ

eΛ
eG

−−−−−→ eΛ
(This definition of compatibility is given in Chapter 17 of [18] and
is further elaborated in [14, 13].) The mutation map is compatible
with ≡ as is shown in [12]. However, crossover (even uniform
crossover) is not compatible with ≡. This can be seen by a simple
example with string length ` = 2. Consider the two population
vectors p = [0 1 0 0]T and q = [0 1/2 1/2 0]T . The first
represents a population consisting entirely of the 01 string and the
second represents a population with equal representation of the 01
and 10 strings. The map represented by Ξ maps these populations
to the same population in eΛ. If crossover is applied to p, the result
is p since crossing a string with itself always gives that string back.
If uniform crossover with rate 1 is applied to q, the result is the
population vector [1/4 1/4 1/4 1/4], and Ξ does not map this
population vector to Ξ(p). Thus, the diagram does not commute.

Let Ψ = {p ∈ Λ : |x| = |y| implies px = py}. In other
words, Ψ is the set of populations where all representatives of each
unitation class are equally likely. The infinite population model
equations for uniform crossover are invariant under a permutation
of the string positions. (This can be seen by referring to the tensor-
product formulation of infinite population model given in [3].) Mu-
tation and proportional selection (assuming a fitness function of
unitation) are compatible with unitation. If the initial population p
is in Ψ, then G(p) will be in Ψ, and the trajectory starting at p will
be in Ψ. We do obtain commutativity of the following diagram:

Ψ
G

−−−−−→ Ψ

Ξ

??y
??yΞ

eΨ
eG

−−−−−→ eΨ
Thus, our model will coarse-grain the full infinite population

model on Ψ. In other words, if both the initial population is in Ψ,
then the trajectory of G will be in Ψ, and our model will correctly
track this trajectory.

Even though the unitation infinite population model may accu-
rately mirror the behavior of the full model on Ψ, this may be mis-
leading since the trajectory of the full model in Ψ may be unstable
in Λ. In other words, given a slight perturbation away from Ψ,
the trajectory of the full model may diverge from Ψ, perhaps to



converge to a fixed point which is far from Ψ. This can be illus-
trated by a 2-bit GA example. Let the fitness function f be given
by f(00) = f(11) = 1 and f(01) = f(10) = 2. Suppose
that we start the full infinite population model from the popula-
tion vector [1 0 0 0] which corresponds to a population con-
sisting solely of copies of the 00 string. Then the dynamical sys-
tem trajectory will converge to the center of the simplex, namely
[1/4 1/4 1/4 1/4]. But the center of the simplex is an unstable
fixed point, and given a small perturbation that breaks the symme-
try between the frequencies of 01 and 10, the trajectory will either
converge to the fixed point [0 1 0 0] or the fixed point [0 0 1 0],
both of which are stable. A finite population GA is likely to move
close to one or the other of these fixed points (and infrequently
jump from a neighborhood of one fixed point to a neighborhood of
the other).

3.2 Limitations of the infinite population model
It is conjectured (see [18]) that the infinite population model of

a standard GA that uses mutation by a rate always converges to a
fixed point. (Numerical examples of cyclic behavior were given in
[20], but these were for a very nonstandard mutation.)

A standard way to apply a dynamical system model is to find
the fixed points and their stability, and then to hope that the corre-
sponding finite population GA will spend a lot of time near stable
fixed points. There are some reasons why this may not happen.

The behavior of the infinite population model will be influenced
by all points in the search space. Thus, if there are points or regions
of the search space which a finite population GA is unlikely to sam-
ple, then these points or regions may have a substantial influence
on the behavior of the infinite population model that is not reflected
in the behavior of a typical run of the finite population GA.

An example is the needle-in-the-haystack fitness. Suppose that
the string length is at least 20 and the population size is 1000 or
less. In the infinite population model, there will be a selective pres-
sure towards the needle string. If the mutation rate is not too high,
there will be a stable fixed point “close” to the uniform population
consisting of copies of the needle string. However, a finite pop-
ulation GA will be unlikely to ever sample the needle string in a
reasonable number of generations, so the finite population GA will
be doing random search in almost all runs.

Genetic drift is another reason why the infinite population model
may not predict the behavior of a finite population GA. The infinite
population model is a deterministic dynamical system, whereas the
finite population GA is a stochastic system. We will expect that
the finite population GA will periodically jump from the domain
of attraction of one stable fixed point to the domain of attraction of
another. For a sufficiently large population size and a sufficiently
“attractive” fixed point, this will happen relatively infrequently, but
for a small population size, this may happen more frequently. (For a
small population size, it is more likely that the next population will
be further from the expected population. In fact, theorem 3.5 of
[18] shows that the variance of the distance of the next population
from the expected next population is proportional to the inverse
population size.)

Further, there may be unstable fixed points that strongly influ-
ence the behavior of both the infinite population model and the fi-
nite population GA. The infinite population model will take small
steps (i. e. not move very far in each generation) when it is suffi-
ciently close to an unstable fixed point. The same can be true for
the finite population GA. For example, a fixed point may be un-
stable due to the attraction of a high-fitness point or region in the
search space that the finite population GA is unlikely to sample,
and thus the finite population GA may “stagnate” near the unstable

fixed point until it does sample the high fitness point or region.
Despite the above limitations of the infinite population model, it

still “usually” (in some imprecise sense) does a good job of pre-
dicting the behavior of a GA. Chapter 8 of [18] provides examples
of how populations tend to stay close to stable fixed points. Rowe
[12] provides a number of examples where the infinite population
model gives very good explanations of the behavior of a finite pop-
ulation GA. However, it helps to keep the above limitations in mind
when applying these models.

3.3 Determining the crossover probabilities for
the unitation model

Assume that unitations u, v, and w are given, and that we want to
find the probability that a string of unitation w results when strings
of unitation u and v are crossed using uniform crossover with rate
1. (We will consider other rates later.) Let r1(u, v, w) denote this
probability (where the subscript denotes the crossover rate).

First, we need to consider how the bits in the parent strings can
correspond. Let x be a given string of unitation u. Let y be a ran-
domly chosen string of unitation v, and let k denote the number
of positions where a 1 in y corresponds to a 1 in x. The choice
of y can be viewed as the following hyper-geometric experiment.
We choose the 1 positions of y from the ` possible string positions,
and we consider a “success” to be when the chosen position corre-
sponds to a 1 in x. Then the probability of k successes is given by
the hyper-geometric formula:

Pr[|x ⊗ y| = k] =

`
u

k

´`
`−u

v−k

´
`

`

v

´

Once k has been determined, the relationship between x and y
with respect to uniform crossover is determined. (The order of bits
is not significant for uniform crossover.) Without loss of generality,
we can assume that the string positions have been ordered so that
the 1-positions of x come first. Then we have the following picture
of the relationship between the bits of x and the bits of y.

x =

kz }| {
1 . . . 1

u−kz }| {
1 . . . 1

v−kz }| {
0 . . . 0

`−u−v+kz }| {
0 . . . 0

y = 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

(1)

By looking at these groups, we can determine the lower and up-
per bounds for possible values of k. Since ` − u − v + k ≥ 0, we
have k ≥ u + v − `. And k must be nonnegative. Clearly k cannot
be greater than u, v, or w.

The next step is too consider the choice of a crossover mask that
will give child string z of unitation w. Notice that the bits of the
mask corresponding the to first and last groups of positions in (1)
have no effect on the result of the crossover since x and y agree
in these positions. Furthermore, the first group of positions will
contribute exactly k one bits to the child, and the last group of
positions will contribute no one bits to the child. Thus, the mask
bits corresponding to the second and third groups of positions in
(1) must be set to contribute w − k one bits to the child z. There
are u + v − 2k positions in these these two groups, and there will
be
`

u+v−2k

w−k

´
settings of these mask bits that will produce w − k

one bits in the child. Thus, given k, the number of masks that will
give a child with exactly w one bits is 2`−u−v+2k

`
u+v−2k

w−k

´
, and

the probability of such a mask is 2−` times this quantity.
Thus, the formula for the uniform crossover probability r1(u, v, w)



from unitation classes u and v to unitation class w is given by:

r1(u, v, w) =

min(u,v,w)X

k=max(0,u+v−`)

`
u

k

´`
`−u

v−k

´`
u+v−2k

w−k

´
`

`

v

´ 2−u−v+2k

Next we consider a crossover rate of χ that may be less than
1. This means that in the operation of crossing parents u and v,
crossover as described above is done with probability χ, or the child
is u with probability (1 − χ)/2, or the child is v with probability
(1−χ)/2. Thus, the crossover rate χ probability of crossing u and
v to get w is given by

rχ(u, v, w) =

8
>>><
>>>:

χ r1(u, v, w) + χ if u = v = w

χ r1(u, v, w) + (1 − χ)/2 if u = w 6= v

χ r1(u, v, w) + (1 − χ)/2 if v = w 6= u

χ r1(u, v, w) if u 6= w and v 6= w

3.4 Determining mutation probabilities for the
unitation model

To simplify, we will assume standard bitwise mutation using a
rate µ. In other words, each bit of a string is mutated independently,
and a bit is flipped with probability µ.

Given a string x of unitation u, we want to determine the prob-
ability that it will be mutated to a string y of unitation v. Clearly,
this can happen if w zero bits are mutated to one bits, and u−v+w
one bits are mutated to zero bits where 0 ≤ w ≤ min(` − u, v).
The probability that this happens is
min(`−u,v)X

w=0

 
` − u

w

! 
u

u − v + w

!
µ2w+u−v(1 − µ)`−2w−u+v

(An equivalent formula was derived in [12]).

4. EXPERIMENTAL RESULTS
In this section we present results that illustrate bistability for

string lengths of 50 and 100. We define the “sloping plateau”
plateau fitness functions, and give results using both the unitation
model and finite population GA runs.

The sloping plateau functions are defined by

Pa,b,k(x) =

(
a + b + 1 if |x| < k

b + (` − |x|)/` if |x| ≥ k

The function has a “plateau” of fitness height a + b + 1 for strings
whose unitation is less than k. The plateau is the global optimum.
For unitation classes greater than or equal to k, there is a gradual
linear slope up to the plateau. The value of b determines the slope:
a larger value of b means that the slope up to the plateau is more
gradual. The value of a determines the height of the plateau: a
larger value of a means that the fitness plateau is higher above the
non-plateau points. The sloping plateau fitness for ` = 20, k = 5,
a = 5, and b = 5 is plotted in Figure 2.

We are interested in showing situations where crossover is harm-
ful to the performance of a GA. When there is bistability, there is
a stable fixed point near the center of the simplex. The sloping
plateau functions are designed to give weak but nonzero selection
pressure near the center of the simplex. Once the plateau is reached,
then there is reasonably strong selection pressure to stay on the
plateau.

We could have added more fitness structure on the plateau, such
as an isolated optimum on the plateau. However, this would not
contribute to our discussion of bistability, and it might have led to
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Figure 2: Sloping Plateau Fitness, ` = 20, k = 5, a = 5, b = 5

problems with the correspondence between the infinite population
model and finite population behavior.

4.1 Infinite population models for the sloping
plateau

This section will explore the results of using the unitation infi-
nite population model on plateau functions. The model was coded
in MapleTM. The correctness was checked by comparing to the pre-
viously coded full infinite population model.

Bistability for a particular setting of the parameters was checked
by iterating the with-crossover model with two different starting
populations: The model was started from the center of the simplex
and from a population with all weight on the all-zeros string. The
model was iterated for up to 2000 generations or until it converged
(two successive populations had sum of absolute value difference
less than 10−9). If the ending populations from the two starting
points were substantially different, we deduced bistability.

For ` = 50, a = b = 5, there was bistability for all values of k
from 1 to 14. For small values of k, mutation rates for bistability
were low, and for large values of k, mutation rates for bistability
were high. For example, for k = 5, there was bistability between
1/(8`) and 1/(2`), and for k = 15 there was bistability between
1/` and 3/(2`). The critical mutation rates for bistability decreased
as k decreased.

We also ran the model without crossover on the same two starting
populations for comparison. The Perron-Frobenius theorem im-
plies that there can be only one stable fixed point for the model
without crossover, and this is what we observed. The three fixed
point distributions for the sloping plateau fitness with ` = 50,
a = b = 5, k = 10, and µ = 1/(2 ∗ `) = 0.01 are shown in
Figure 3.

It is interesting to note that the with-crossover needle fixed point
has considerably more variance and more concentration on the low
unitation classes. This effect was demonstrated for the needle-
in-the-haystack fitness by Boerlijst et al [2] and confirmed in the
other papers on bistability. Thus, if the GA was trying to find low-
unitation strings in the center of the plateau (such as a needle at the
all-zeros string), and if the GA could reach the needle fixed point,
crossover would be very beneficial.

4.2 Finite population results for sloping plateau
The results in this section are for a generational GA that uses

proportional (roulette-wheel) selection, standard mutation, and uni-
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Figure 3: Fixed Point Distributions, ` = 50, k = 10, a = 5,
b = 5, µ = 0.01

form crossover either with crossover rates 0, 1/2, and 1. Runs were
made with mutation rates µ = 1/(8`), 1/(4`), 1/(2`), 3/(4`),
1/`, and 5/(4`). The population size for all runs except those for
Figure 9 was 10,000. The GA was implemented in Java by the first
author and his students.

Experiments were done for ` = 50, 100, a = b = 5. One set
of runs was done to determine the number of generations necessary
to reach the plateau, and another set of runs was done to count the
number of plateau points and determine the average fitness after
200 or 300 generations.

4.2.1 Phase One: Finding the Plateau
The first set of experiments were designed to find the waiting

time for the GA to hit the first plateau (or optimal) point with and
without crossover for ` = 50, k = 10, and various mutation rates.
(The value k = 10 was chosen so that an initial random population
of size 10,000 would not be likely to contain plateau points, but
the GA would not take very long to get to the plateau.) Figure
4 shows that the with-crossover GA is reaching the plateau much
more rapidly than the without-crossover GA.

Second similar experiment with ` = 100, k = 28 was run as
well with very similar results. Figure 5 shows again that the uni-
form crossover operator is beneficial for first hitting time of the
plateau.

4.2.2 Phase Two: Converging on the Plateau
The next set of experiments explored the average fitness over a

longer number of generations for the previous two plateau func-
tions. Bistability induced by the crossover operator has a strong
effect here. The results are very counter-intuitive. The previous
section showed a drastically shortened discovery time for optimal
strings with crossover. Yet when the GA is allowed to run past
that point, crossover inhibits the GA from accumulating many in-
dividuals on the plateau in the population. For all runs except those
with very small mutation rates relative to 1/`, the mutation-only
GA outperformed two GAs with crossover by a significant margin.
(The GA for the very small mutation rates was not bistable.) When
the GA was bistable, the mutation-only GAs were better able to ac-
cumulate highly fit strings on the plateau, producing an increase in
the average fitness of the population.

Average Generations to Plateau K=10

0

50

100

150

200

0.0025 0.005 0.01 0.015 0.02 0.025

Mutation Rate

G
en

er
at

io
n

s

Cross Rate 0
Cross Rate 1/2
Cross Rate 1

Figure 4: Generations to Optimum, ` = 50, k = 10
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Figure 7: Average Fitness, ` = 50, k = 10, 200 generations

Figure 6 demonstrates that this is the typical situation. At gen-
eration 19, the with-crossover run first hits the plateau. From then
on, there are intermittent copies of plateau strings, but they do not
accumulate, so the average fitness stays below 6. The without-
crossover GA does not hit the plateau until about generation 50,
and then starting at about generation 60, it quickly accumulates
plateau strings to bring the average fitness up to around 10. Many
more generations could be shown that would look like the last gen-
erations on the graph. The with-crossover GA will continue to
have intermittent plateau strings and low fitness, while the without-
crossover GA will maintain high fitness and many plateau strings.

4.2.3 Bistability and Finite Populations
The large finite population effects of bistability are well illus-

trated by considering the case where ` = 50 and k = 10. The
average fitness after 200 generations and various mutation rates are
shown in Figure 7. Each result is the average of 100 runs, and error
bars are shown. In looking at this figure, the reader should keep
in mind that the fitness of plateau strings is a + b + 1 = 11 and
the maximum fitness of non-plateau strings is b + (` − k)/` =
5 + (50 − 10)/50 = 5.8. For crossover rate 1, the four larger mu-
tation rates, namely 1/`/2 = 0.010, 3/`/4 = 0.015, 1/` = 0.02,
and 5/`/4 = 0.025 are all infinite-population bistable, and the
center-of-simplex fixed point for 1/`/4 = 0.005 is just barely un-
stable, while only the needle fixed point for 1/`/8 = 0.0025 is
stable.

For mutation rate µ/2 = 0.005 the reader might compare to
Figure 3. The center-of-simplex fixed point distribution in Fig-
ure 3 has a very small weight on plateau points, and that is what
the finite population experiment shows with only 25 of 100 with-
crossover runs ending with populations containing plateau points,
and for those population with plateau points, there were at most
2 of these points. Figure 4 shows that all populations are likely
to have hit the plateau by 200 generations, but they cannot main-
tain any substantial number of points on the plateau. On the other
hand, mutation-only fixed point distribution of Figure 3 has a heavy
weight on the plateau, and over 85% of these runs ended with pop-
ulations with over 1000 plateau strings.

For the other bistable and nearly bistable mutation rates, the re-
sults are similar. For µ = 1/`/8 = 0.0025, the GA with crossover
rate 1/2 was able to achieve as high average fitness as the no-
crossover GA.

Results for ` = 50, k = 28, and 300 generations are shown
in Figure 8. For mutation rates µ = 1/(8`) and 1/(4`), the infi-
nite population model was not bistable. For mutation rates 1/(2`),
3/(4`), 1/`, and 5/(4`) the model was bistable.
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Figure 8: Average Fitness, ` = 100, k = 28, 300 generations
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Figure 9: Acceleration of Crossover to Plateau, ` = 50, k = 10

4.3 Acceleration due to Crossover
The speed up of the first hitting time of the plateau is similar

to the acceleration due to crossover seen by Suzuki and Iwasa [17],
except that here we are looking at the first hitting time of the plateau
whereas Suzuki and Iwasa were looking at the time to domination
of the needle string. As we have seen above, when there is bistabil-
ity, it will take a very long time for the with-crossover GA to reach
a a population with a substantial number of plateau points.

Figure 9 shows the acceleration of crossover for the first hitting
time to the plateau as a function of both mutation rate and popula-
tion size. Each point is based on the average of 50 GA runs. Define
Th as the number of generations until the GA population first in-
cludes a plateau point. This hitting time acceleration is defined by

Ah
cross =

Th|without crossover

Th|with crossover

where “with crossover” means uniform crossover with rate 1.

5. CONCLUSION
Crossover in a GA can both very beneficial and very harmful.

This paper gives fitness functions and GA parameters where the
GA will get stuck and not move far from a random population in
any practical time frame. In this situation, which we call bistability,
the GA obviously has failed. The sloping plateau fitness functions
that we have used to demonstrate this are unimodal, simply defined,
and in our opinion not contrived. It seems that bistability happens
in situations with relatively strong recombination, weak selection,
and an appropriate level of mutation. Crossover can also accelerate
the progress of the GA to wherever it is going. We have observed



speedups of up to 10 by using crossover over the same GA without
crossover, and Suzuki and Iwasa [17] have observed and predicted
speedups of up to about 70 in a somewhat different situation. So if
bistability can be avoided, crossover can be of great benefit.

What we we mean by weak selection? If we had used a rank-
based selection method on the sloping plateau fitness, the GA would
move quickly up the slope and this would probably have eliminated
bistability. However, previous results on the needle-in-the-haystack
fitness show bistability with binary tournament and truncation se-
lection. Thus, we would expect that these selection methods would
give bistability with the plateau fitness. In this case, strength of
selection for the infinite population model might be determined by
the fraction of the search space that is on the plateau.

Our results and the Suzuki and Iwasa results support the con-
cluding of Stephens and Waelbroeck [16, 15] that the recombina-
tion of long high-order schemata is very important when schema
reconstruction dominates, i. e., when bistability is avoided.
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