
A Fixed Point Analysis of a Gene Pool GA with Mutation

Alden H. Wright ∗

Computer Science
University of Montana

USA
wright@cs.umt.edu

44 121 414 2793

Jonathan E. Rowe
Computer Science

University of Birmingham
UK

j.e.rowe@cs.bham.ac.uk

Riccardo Poli
Computer Science
University of Essex

UK
rpoli@essex.ac.uk

Christopher R. Stephens
Instituto de Ciencias Nucleares

UNAM, Mexico
stephens@nuclecu.unam.mx

Abstract

This paper analyzes a recombina-
tion/mutation/selection genetic algorithm
that uses gene pool recombination. For linear
fitness functions, the infinite population model
can be described by ` equations where ` is the
string length. For linear fitness functions, we
show that there is a single fixed point and that
this fixed point is stable. For the ONEMAX
fitness function, the model reduces to a linear
recurrence in a single variable which can be
explicitly solved. The time-to-convergence for
ONEMAX is given.

1 Introduction

A major goal of genetic algorithm theory is a tractable
model of a GA that gives quantitative predictions over mul-
tiple generations. The Vose dynamical system model [9] is
exact in the infinite-population limit, but it tends to be in-
tractable for results on specific problems due to the fact
that the model keeps track of the frequency of every string.
What is needed is a “coarse-grained” model that simplifies
the model. One natural way to attempt to coarse-grain a GA
model is to look at the representations of schemata, espe-
cially low-order schemata. (See [7] and [10].) One would
like to track schema averages over multiple generations.

Crossover does not change the schema frequencies of or-
der 1 schemata. Stated another way, it preserves the fre-
quencies of each allele. The effect of crossover on a pop-
ulation is to move the population closer to linkage equi-
librium. In other words, it decorrelates the alleles at dif-
ferent positions. In a linkage equilibrium population, the
representation of any string is determined by the allele fre-
quencies. Geiringer’s theorem [1] shows that the limit of

∗This paper was written while Alden Wright was visiting the
School of Computer Science, University of Birmingham, UK,
supported by EPSRC grant GR/R47394.

repeated applications of crossover is a population in link-
age equilibrium (also known as Robbins’ proportions).

In gene pool recombination, the population is taken directly
to linkage equilibrium in one step. In other words, the alle-
les are completely decorrelated, and the population is com-
pletely described by the allele frequencies. This can be im-
plemented for a finite population by choosing the genes for
a new individual from a pool constructed from the whole
population. In other words, the population allele distribu-
tion at a particular locus defines a probability distribution,
and the allele at that position in a new individual is selected
from that probability distribution. Gene pool recombina-
tion was introduced by Voigt and Mühlenbein in [8].

After a gene pool recombination step, the complete state of
the population is determined by the allele frequencies, and
the number of these variables is linear rather than expo-
nential in the string length. This “coarse-graining” makes
the gene pool much more tractable for analysis than the
two-parent recombination GA, and this is the focus of this
paper.

Mühlenbein, Mahnig and others have done considerable
work on the Univariate Marginal Distribution Algorithm
(UMDA) [6], [4]. This algorithm uses gene pool recombi-
nation, and selection, and no mutation. Response to selec-
tion is computed or approximated for a variety of selection
methods. In [3], Mahnig and Mühlenbein introduce muta-
tion into UMDA by a technique called Bayesian prior. The
emphasis is on the interaction of the mutation rate and the
population size.

By using the Walsh basis, we are able to analyze a GA that
uses gene pool recombination, selection, and mutation. We
find and rigorously prove the stability of fixed points which
is a different approach than has been taken in the work on
UDMA which is primarily oriented towards “response to
selection”. Our work shows how the Vose dynamical sys-
tem model framework can be used to model algorithms like
UMDA.

We will call the GA that uses gene pool recombination,

selection, and mutation a gene pool GA.

The paper considers linear fitness functions. Other classes
of fitness functions, such as the class of single-peak
(needle-in-the-haystack) fitness functions will be consid-
ered elsewhere.

There has been a long history of research on the analysis
of fitness functions by means of their Walsh coefficients.
The Vose model [9] uses the Walsh transform to simplify
the model for crossover and mutation. This paper makes a
connection between these two lines of research. It should
be the first step in a research program that uses the Walsh
transform to analyze selection/mutation/recombination ge-
netic algorithms.

In addition, the gene pool GA can suggest general proper-
ties of recombination that can then be tested for a GA that
uses two-parent recombination.

We show that for any linear fitness function over fixed
length binary strings, there is a unique fixed point which is
asymptotically stable. For the ones-counting (ONEMAX)
fitness function, explicit formulas are given for all fixed
points of the G function that defines the infinite popula-
tion model. To our knowledge, this is the first time that
formulas for fixed points have been given for a GA that
involves selection, recombination, and mutation and for ar-
bitrary string length.

A gene pool recombination GA can either be used as an
approximation to a two-parent recombination GA or as an
alternative GA. We show empirically that the gene pool GA
is a good approximation to a two-parent recombination GA
for linear fitness functions.

For all results where separate proofs are given, the proofs
are in the appendix.

2 Notation

Notation in this paper mostly follows [9].

The search space for this paper is the set of all binary
strings of length ` which will be denoted Ω. The binary
representation of a string induces a correspondence from
the elements of Ω to the set of integers from 0 to 2` − 1.
Thus, the integer 0 corresponds to the all-zeros string, and
the integer 2` −1 corresponds to the all-ones string. A sum
over i ∈ Ω is equivalent to a sum from i = 0 to i = 2` − 1.

The bitwise mod 2 sum of two strings j and k is denoted
by j⊕k; Ω is a group under this operation. Note that j⊕k
is also the XOR of j and k. The identity element is the
string of zeros, which will be denoted by 0. The bitwise
product of strings j and k is denoted by j ⊗ k. The ones-
complement of k is denoted by k.

The number of ones in a binary string k is denoted by #k.

For each u ∈ Ω, Ωu = {i ∈ Ω : i ⊗ u = i}; Ωu

is the set of binary strings which have a 1 only in posi-
tions where u has a 1. It is also a schema denoted by a
string over {0,∗} where there are asterisks in those posi-
tions where the corresponding bit of u is 1, and where the
fixed positions are all zeros. For example, if ` = 4 and
u = 0101, then Ωu is the special schema 0∗0∗, and is also
the set {0000, 0001, 0100, 0101}. Note that Ωu is a sub-
group of Ω.

Let L = {j ∈ Ω : #j = 1}. Under the identification of
Ω with the integers, L = {2k : k = 0, 1, . . . , ` − 1}. Let
Lu = {j ∈ L : j ⊗ u = j} = L ∩ Ωu. For example,
if ` = 6 and u = 21, Lu = {20, 22, 24} = {1, 4, 16} =
{000001, 000100, 001000}.

The set L will be used extensively as an index set. This
might seem unnatural since L is a subset of Ω which does
not correspond to consecutive integers. If this bothers the
reader, a product over i ∈ L, such as

∏
i∈L Si, could be

rewritten as
∏`−1

k=0 S2k .

A population (a multiset of Ω) is represented as a popula-
tion vector x indexed by Ω; xv = xv0v1...v`−1

is the frac-
tion of the population which is string v = v0v1 . . . v`−1,
where v0, v1, . . . , v`− are the bits of v. For example, if
` = 2 and the population as a multiset is {00, 01, 01, 11},
then the corresponding population vector is [14 ,

1
2 , 0, 1

4]T .
A population vector is a population-size independent rep-
resentation of a population, and thus is natural for infinite-
population models.

If a population x depends on time (or GA generation) t,
then x(t) is the population at time t.

All population vectors are contained in the simplex Λ =
{x :

∑
j∈Ω xj = 1 and xj ≥ 0 for all j}. The simplex

is a natural setting for the dynamical systems model since
it allows population vectors to range continuously over a

subset of IR2`

and thus allows derivatives and calculus to
be used.

The Walsh matrix W is an 2` by 2` matrix defined by
Wi,j = 2−`/2(−1)#(i⊗j) The Walsh matrix is symmetric
and W = W−1. For example, the Walsh matrix for ` = 2
is:

W =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

If x is a population vector, then the Walsh transform of
x is Wx and is denoted by x̂. Let e0, e1, . . . , eN−1 be
the standard basis vectors for IRN . Then the vectors
ê0, ê1, . . . , êN−1 form the Walsh basis for IRN . If x is a
vector then x̂ = Wx is expressed in the Walsh basis. In
other words, xj is the jth coordinate of x in the standard
basis and x̂j is the jth coordinate of x in the Walsh basis.
If A is a 2` by 2` matrix, then WAW is the Walsh trans-

form of A and is denoted by Â.

3 Linkage Equilibrium

This section gives some basic results relating schema aver-
ages, the Walsh representation of a population, and proper-
ties of a population that is at linkage equilibrium.

These results will show how string and schema frequencies
can be determined from the Walsh coefficients that we use
to describe our models.

If x is a population vector and u ∈ L, let

x(u)
v =

∑

i∈Ω

xiδi⊗u,v

where δj,k = 1 iff j = k. In other words, x(u)
v de-

notes the proportion of individuals i in the population such
that the position of i corresponding to u is the same as
the corresponding position of v. For example, if x =
1
64 [19, 5, 29, 11]T , then x

(01)
00 = 48/64 and x

(01)
01 =

16/64.

Definition 1 A population x is in linkage equilibrium if

xk =
∏

u∈L

x
(u)
u⊗k

Thus, a population is in linkage equilibrium if the fre-
quency of each string is the product of the correspond-
ing 1 schema averages. For example, the popula-
tion 1

64 [19, 5, 29, 11]T (with Walsh basis representation
1
32 [16, 8, −4, −1]T) is in linkage equilibrium.

The following relates the schema sums of the order 1
schemata and the order 1 Walsh coefficients. It follows
from the formula for the Walsh coefficients.

Lemma 2 If u ∈ L,

x(u)
v =

1

2

(
1 + (−1)#v2`/2x̂u

)

The frequency of any string can be found from the Walsh
basis representation of the population.

Corollary 3 Let x be in linkage equilibrium. For any v ∈
Ω,

xv = 2−`
∏

i∈L

(
1 + (−1)#(i⊗v)2`/2x̂i

)

The following theorem gives the relationship of linkage
equilibrium to the Walsh basis representation of a popu-
lation. The result follows easily from theorem 10.9 of [9].

Theorem 4 If population x is in linkage equilibrium, then

x̂k = 2(#k−1)`/2
∏

i∈Lk

x̂i

Remark: While higher-order schemata will not be used
in this paper, it is interesting to note that the higher order
schemata are products of order 1 schemata for a popula-
tion at linkage equilibrium. Thus, in traditional notation,
the frequency of the schema 0∗1∗ is the product of the fre-
quencies of 0∗∗∗ and ∗∗1∗.

Theorem 5 If x ∈ Λ, then |x̂k| ≤ 2−`/2 for all k ∈ Ω.

4 The Gene Pool Model in the Walsh Basis

In this paper, one generation of the gene pool GA will con-
sist of the following three steps:

1. Gene pool recombination.
2. Proportional selection.
3. Mutation.

The dynamical system model will be described by a func-
tion G : Λ −→ Λ. In other words, if x(t) is the population
at generation t, then the population at generation t + 1 is
given by x(t+ 1) = G(x(t)).

G is a composition of M, F , and U (i. e., G = U ◦F ◦M).
The M, F , and U functions are described below.

The next three subsections tell how to compute F , U , and
M in the Walsh basis.

4.1 Proportional selection

Following [9], the effect of proportional selection can be
described by a function F : Λ −→ Λ. The probability that
an individual k ∈ Ω is chosen to be in the new population
is F(x)k. Or stated another way, if proportional selection
is applied to a population x, then the expected frequency
vector for the resulting population is F(x).

If f ∈ IR2`

is the fitness function (i. e., fk is the fitness of
k) then

F(x) =
Fx

fTx

where F is the diagonal matrix such that Fk,k = fk.

The average fitness fTxwhen computed in the Walsh basis

is the same: f̂T x̂ = (fTW)(Wx) = fTx. Thus,

F̂(x) =
WFx

f̂T x̂
=
WFWWx

f̂T x̂
=

F̂ x̂

f̂T x̂

Lemma 6 For any i, j ∈ Ω,

F̂i,j = 2−`/2f̂i⊕j

Let σk denote the 2` × 2` matrix defined by (σk)i,j =
δi⊕k,j . Then it is easy to show that (σkx)i = xi⊕k.

The following corollary tells how to compute proportional
selection in the Walsh basis.

Corollary 7

F̂ (x)k =

∑
i∈Ω f̂i⊕kx̂i

2`/2f̂T x̂
=

∑
i∈Ω f̂ix̂i⊕k

2`/2f̂T x̂
=

f̂Tσkx̂

2`/2f̂T x̂

4.2 Mutation

The effect of mutation can be described by a function U :
Λ −→ Λ. The probability that an individual k ∈ Ω is
chosen to be in the new population is U(x)k.

If the probability that a bit is mutated (flipped) is µ, then
the probability that an individual i ∈ Ω is mutated to an
individual j is µ#(i⊕j)(1−µ)`−#(i⊕j). (Note that #(i⊕j)
is the Hamming distance from i to j.) Thus, we can define
a 2` × 2` mutation matrix U with Ui,j = µ#(i⊕j)(1 −

µ)`−#(i⊕j), and U(x) = Ux.

Following Vose (section 4.3 of [9]), we define a vector µ
indexed over Ω by

µi = (µ)#i(1 − µ)`−#i

(Whether µ denotes the scalar mutation rate or the mutation
vector should be clear from the context.) The following
lemma is proved in [9].

Lemma 8
µ̂k = 2−`/2(1 − 2µ)#k

The Walsh transform of U is easily shown to be diagonal.

Lemma 9 Û is a diagonal matrix which diagonal entries
given by:

Ûi,i = (1 − 2µ)#i

Theorem 10

Û(x)k = (Û x̂)k = (1 − 2µ)#kx̂k

Thus, mutation is very simple in the Walsh basis: it corre-
sponds to multiplication by a diagonal matrix.

4.3 Gene pool recombination

To implement gene pool recombination in a finite popula-
tion GA, the order 1 schema sums x(u) for #u = 1 are
computed from the current population x. Then each indi-
vidual of the new population is constructed by choosing
each bit according the probabilities determined by these
schema sums. Thus, the probability that the bit at posi-

tion i is 0 is x(2i)
0 and the probability that the bit at position

i is 1 is x(2i)
2i .

In the infinite population model, the population y resulting
from applying gene pool recombination to population x has
the property that ŷu = x̂u for #u = 1. In addition, y is at
linkage equilibrium. Thus, the Walsh coefficients of the
population after gene pool recombination can be computed
from theorem 4.

As with proportional selection and mutation, we can de-
scribe gene pool recombination through a function M :
Λ −→ Λ. By theorem 4, we have:

M̂(x)k = 2(#k−1)`/2
∏

i∈Lk

x̂i = 2−`/2
∏

i∈Lk

2`/2x̂i

This formula tells how to compute gene pool recombina-
tion in the Walsh basis. Note that if k ∈ L (i. e., #k = 1),

then M̂(x)k = x̂k. In other words, M is the identity on
the order-1 Walsh coefficients.

5 Linear fitness and the ONEMAX problem

Definition 11 A fitness function represented by a fitness
vector f is linear if

fi = c+
∑

j∈L

bjδi⊗j,j

where c and bj , j ∈ L are constants. (Note that if j = 2k ∈
L, then i⊗ j = j if and only if bit k of i is 1.)

Without loss of generality, we can assume that bj ≥ 0 for
j ∈ L. If some bj < 0 where j = 2p, this says that a string
with 0 at position p is more fit than the same string with a
1 at that position. Thus, a change of representation where
0 and 1 are interchanged in all strings at that position will
make bj > 0.

The ONEMAX fitness function is the linear fitness function
where c = 0 and bj = 1 for all j ∈ L.

The following lemma shows that when a linear fitness is
expressed in the Walsh basis, only the order 0 and order 1
coefficients are nonzero.

Lemma 12 For any k ∈ Ω,

f̂k =

2`/2c+ 2`/2−1
∑

j∈L bj if k = 0

−2`/2−1bk if k ∈ L

0 otherwise

If c ≥ 0 and bj ≥ 0 for j ∈ L, then f̂j ≤ 0 and f̂0 ≥

−
∑

j∈L f̂j .

Since we are working in the Walsh basis, it will convenient
to simply characterize a linear fitness in terms of its Walsh
coefficients. So in this section, we assume that f̂k = 0 for
k /∈ L ∪ {0}, f̂j ≤ 0 for j ∈ L and f̂0 +

∑
j∈L f̂j ≥ 0.

These correspond to the assumptions that fitness is linear,
bj ≥ 0, and c ≥ 0.

We can now compute selection in the Walsh basis. For k ∈
L,

F̂(y)k =
f̂Tσkŷ

2`/2f̂T ŷ

=

∑
i∈Ω f̂iŷi⊕k

2`/2
∑

i∈Ω f̂ix̂i

=
2−`/2f̂k + f̂0ŷk + 2`/2

∑
j∈L\{k} f̂j ŷj⊕k

f̂0 + 2`/2
∑

j∈L f̂j ŷj

Now assume that y = M(x) where M denotes gene pool
recombination. Then ŷk = x̂k and ŷj⊕k = 2−`/2x̂j x̂k for
for j, k ∈ L by theorem 4.

For k ∈ L,

Ĝ(x)k = êT
k U(F(M(x)))k

= (1 − 2µ)
2−`/2f̂k + f̂0x̂k + 2`/2x̂k

∑
j∈L\{k} f̂j x̂j

f̂0 + 2`/2
∑

j∈L f̂j x̂j

This formula is a recurrence that defines the gene pool
model for linear fitness in terms of the variables x̂k for
k ∈ L.

Notation is simplified by a variable substitution. Let ẑk =
2`/2x̂k. Then if z is in the simplex, lemma 5 shows that
−1 ≤ ẑ ≤ 1. The recurrence written in terms of the ẑk is:

Ĝ(z)k = (1 − 2µ)
f̂k + f̂0ẑk + ẑk

∑
j∈L\{k} f̂j ẑj

f̂0 +
∑

j∈L f̂j ẑj

= (1 − 2µ)ẑk + (1 − 2µ)
f̂k(1 − ẑ2

k)

f̂0 +
∑

j∈L f̂j ẑj

(1)

Later we will want to be able to evaluate the average fitness
in terms of the ẑj . The average fitness is

fTx = f̂T x̂ = 2−`/2f̂0 +
∑

f̂j x̂j

= 2−`/2f̂0 +
∑

f̂j2
−`/2ẑj

= 2−`/2(f̂0 +
∑

f̂j ẑj)

The fixed point equations are:

f̂kẑ
2
k +

2µ

1 − 2µ

f̂0 +

∑

j∈L

f̂j ẑj

 ẑk − f̂k = 0 (2)

Lemma 13 If fitness is linear and 0 < µ < 1/2, then the
gene pool GA has a unique fixed point in the simplex.

Theorem 14 For linear fitness and 0 < µ < 1/2, the gene
pool GA model has a unique fixed point, and this fixed point
is asymptotically stable.

5.1 The ONEMAX problem

For a rescaled ONEMAX fitness function, we can take
f̂0 = ` and f̂j = −1 for all j ∈ L. Rescaling has no
effect on the G function or the fixed points, but it does af-
fect the total fitness. From lemma 12, this original ONE-
MAX fitness is 2`/2−1 times the rescaled ONEMAX fit-
ness. From an earlier remark, the average rescaled fitness
is 2−`/2(f̂0 +

∑
f̂j ẑj) = 2−`/2(`−

∑
ẑj). Thus, the aver-

age ONEMAX fitness is 1
2 (f̂0 +

∑
f̂j ẑj) = 1

2 (`−
∑
ẑj).

If we assume a symmetric population, i. e., if we assume
that ẑj = w for all j, then the recurrence simplifies to:

G(w(t)) = w(t+ 1) = (1 − 2µ)
(`− 1)w(t) − 1

`

=
(1 − 2µ)(`− 1)

`
w(t) −

1 − 2µ

`

For µ = 0, this recurrence is equivalent to one given in [4].

This linear recurrence can easily be solved. Let A =
(1−2µ)(`−1)

` , C = 1−2µ
` .

Gt(w) = w(t) = Atw(0) − C

(
At − 1

A− 1

)

The fixed point is:

wfixed =
−C

A− 1
= −

1 − 2µ

2µ(`− 1) + 1

We can evaluate the average fitness for the original ONE-
MAX fitness at this fixed point. From above, the aver-
age ONEMAX fitness is 1

2 (` −
∑
ẑj) = 1

2 (` − `w) =
`
2 (1 − w). At the fixed point w = wfixed, this evalu-

ates to `(1+µ`−2µ)
1+2µ`−2µ . If the mutation rate is µ = 1

` , this is
`(2−2/`)
3−2/` ≈ 2`

3 .

Theorem 15 Let ε > 0 and let α = `µ so that µ = α/`. If
the gene pool GA model is started on the ONEMAX fitness
function from a random population (w(0) = 0), and if t
generations are done where t is chosen so that

t >
−` ln ε

1 + 2α

then
|Gt(0) − wfixed|

|wfixed|
< ε

In other words, the relative error after t generations is at
most ε.

The theorem says that for a fixed mutation rate, the number
of generations is Θ(`). Section 13.2 of [9] says that G for
general fitness is logarithmically convergent. Theorem 15
agrees with this result, only it gives explicit values for the
constants for the ONEMAX fitness function.

The theorem also says that the time to convergence goes
down as the mutation rate increases. However, as the muta-
tion rate increases, the fixed point moves closer to the mid-
dle of the simplex, so the algorithm has less far to go. When
the mutation rate is 1/2, the fixed point is at the center of
the simplex, and the algorithm starts at the fixed point.

5.2 Empirical comparisons

The gene pool GA gives a good approximation to a two-
parent GA for linear fitness functions. Figure 5.2 show the
average fitness and figure 5.2 shows the number of opti-
mal individuals for 99 generations with gene pool, uniform,
and one-point recombination, where a crossover rate of 1 is
used for uniform and one-point recombination. The string
length was 18, and the mutation rate was 0.01. The graph
shows an average of 10 runs, each with a population size of
500000. The errors are negligible.

0 10 20 30 40 50 60
8

9

10

11

12

13

14

15

16
ONEMAX, string length 18, mutation rate 0.01

Generation

A
ve

ra
ge

 fi
tn

es
s

OnePoint
Uniform
Genepool

Figure 1: The average fitness for different types of recom-
bination

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 ONEMAX, string length 18, mutation rate 0.01

Generation

C
ou

nt
 o

f i
nd

iv
id

ua
ls

 o
f m

ax
im

um
 fi

tn
es

s

OnePoint
Uniform
Genepool

Figure 2: The number of optimal individuals for different
types of recombination

6 Discussion and Conclusion

In the paper we have given an exact infinite population
model of a selection/mutation/recombination genetic algo-
rithm that is tractable for large string lengths. We have
shown that for linear fitness functions, there is a unique
fixed point, and this fixed point is asymptotically stable
in the space of all populations. For the ONEMAX prob-
lem, the model reduces to a single variable, and an explicit
solution to the recurrence equation is given for symmetric
populations. The fixed point equation is a single quadratic
equation in one variable, so an explicit formula for the fixed
point is given. The time to convergence is shown to beO(`)
generations, where ` is the string length.

This paper should be the first step in the unification of
the Walsh basis analysis of crossover/mutation given in [9]
with the Walsh basis analysis of fitness functions.

7 Appendix

First is a technical lemma.

Lemma 16

∑

j∈Ωu

(−1)#(j⊗w) =

{
2#u if w ∈ Ωu

0 otherwise

Proof. Suppose that w ∈ Ωu. This implies that j ⊗ w = 0
for all j ∈ Ωu. Thus, the summation is equal to the number
of elements in Ωu, which is 2#u.

Now suppose w /∈ Ωu. The we can write w = q ⊕ v where
#q = 1, q ∈ Ωu, and q ⊗ v = 0. Note that Ωq = Ωu⊗q =
{0, q}. Then

∑

j∈Ωu

(−1)#(j⊗w)

=
∑

i∈Ωu⊗q

∑

k∈Ωu⊗q

(−1)#((i⊕k)⊗(q⊕v)) (3)

=
∑

i∈Ωu⊗q

(−1)#(i⊗q)
∑

k∈Ωu⊗q

(−1)#(k⊗v) (4)

=
∑

k∈Ωu⊗q

(−1)#(k⊗v) −
∑

k∈Ωu⊗q

(−1)#(k⊗v) = 0 (5)

Equation (4) follows from (3) since (i ⊕ k) ⊗ (q ⊕ v) =
(i⊗q)⊕(k⊗v), and since #((i⊗q)⊕(k⊗v)) (mod 2) =
#(i⊗ q)+#(k⊗ v) (mod 2) . Equation (5) follows from
(4) since Ωq = Ωu⊗q = {0, q}. 2

Proof of lemma 5: The simplex Λ is the convex hull of the
basis vectors e0, e1, . . . , eN−1 of the standard basis. The
vectors ê0, ê1, . . . , êN−1 are the same geometric points ex-
pressed in the Walsh basis, so the simplex is still the convex
hull of these points. But these correspond to the columns
of the Walsh matrix, and every entry of the Walsh matrix

is ±2−`/2. Thus x̂k is a convex combination of 2−`/2 and
−2−`/2. 2

Proof of lemma 6:

F̂i,j = 2−`
∑

u∈Ω

(−1)#(u⊗i)
∑

v∈Ω

(−1)#(v⊗j)Fu,v

= 2−`
∑

u∈Ω

(−1)#(u⊗i)
∑

v∈Ω

(−1)#(v⊗j)δu,vFu,u

= 2−`
∑

u∈Ω

(−1)#(u⊗i)(−1)#(u⊗j)fu

= 2−`
∑

u∈Ω

(−1)#(u⊗(i⊕j)fu

= 2−`/2f̂i⊕j

2

Proof of lemma 12:

f̂k = 2−`/2
∑

i∈Ω

(−1)#(k⊗i)fi

= 2−`/2c
∑

i∈Ω

(−1)#(k⊗i)

+ 2−`/2
∑

j∈L

bj
∑

i∈Ω

(−1)#(k⊗i)δi⊗j,j

= 2`/2cδk,0 + 2−`/2
∑

j∈L

bj

∑

v∈Ωj

(−1)#(k⊗v)
∑

u∈Ωj

(−1)#(k⊗u)δ(v⊕u)⊗j,j

Note that (v ⊕ u) ⊗ j = v ⊗ j and δv⊗j,j = 1 iff v = j.
Thus,

f̂k = 2`/2cδk,0 + 2−`/2
∑

j∈L

bj(−1)#(k⊗j)
∑

u∈Ωj

(−1)#(k⊗u)

= 2`/2−1δk,0(2c+
∑

j∈L

bj) − 2`/2−1
∑

j∈L

δk,jbj

The last statement of the lemma follows easily from the
formula. 2

Proof of Lemma 13: Let ẑ be a fixed point in the simplex.

In the special case where f̂k = 0, ẑk = 0, so throughout
the rest of the proof we assume that f̂k < 0.

Let B = µ
1−2µ (f̂0 +

∑
j∈L f̂j ẑj). Solving equation (2) for

ẑk gives:

ẑk =
1

f̂k

(
−B ±

√
B2 + f̂2

k

)
(6)

We claim that for a solution to be in the simplex, the plus
sign must be used in equation (6). So assume that ẑ repre-
sents a solution in the simplex.

First we claim that B > 0. Recall that we assumed that
f̂0 +

∑
j∈L f̂j ≥ 0 and f̂j < 0 for all j. Since ẑ is in

the simplex, and since mutation is positive, ẑj < 1 for all
j ∈ L by lemma 5. It follows easily that B > 0.

Now we assume that the minus sign is used in equation (6)
and derive a contradiction. Thus,

ẑk < 1 =⇒
1

f̂k

(
−B −

√
B2 + f̂2

k

)
< 1

=⇒ B +

√
B2 + f̂2

k < −f̂k

=⇒

√
B2 + f̂2

k < −f̂k −B

=⇒ B2 + f̂2
k < f̂2

k + 2f̂kB +B2

=⇒ 0 < 2f̂kB

Since f̂k < 0 and B > 0, this is a contradiction.

Thus, the plus sign must always be used in equation (6),
and there is a unique fixed point. 2

To prove theorem 14 we will use the Gershgorin Circle
Theorem (page 685 of [2]).

Theorem 17 Let J by an n by n real-valued matrix, and
let λ be an eigenvalue of J . For some integer k,

|Jk,k − λ| ≤
∑

j 6=k

|Jk,j |

Proof of theorem 14: The existence and uniqueness of the
fixed point was proved in lemma 13.

We calculate the differential of G from equation (1).

∂G(ẑ)k

∂ẑi
= (1 − 2µ)

f̂kf̂i

(
ẑ2
k − 1

)
(
f̂0 +

∑
j f̂j ẑj

)2

∂G(ẑ)k

∂ẑk
= (1 − 2µ)

(
f̂0 +

∑
j∈L\{k} f̂j ẑj

)2

− f̂2
k

(
f̂0 +

∑
j f̂j ẑj

)2 (7)

Equation (2) can be rewritten in the form:

2µẑk

f̂0 +

∑

j∈L

f̂j ẑj

 + (1 − 2µ)f̂k

(
ẑ2
k − 1

)
= 0 (8)

We claim that for a solution ẑ of these equations, ẑk ≤ 0
for all k. This follows from the equations since we have
assumed that f̂k ≤ 0 and f̂0 +

∑
j∈L f̂j ẑj ≥ 0, and we

know that |ẑk| ≤ 1 since ẑ corresponds to a point in the
simplex.

Assume that ẑ is a fixed point. Then using equation (8):

∂G(ẑ)k

∂ẑi
=

−2µf̂iẑk

(
f̂0 +

∑
j f̂j ẑj

)

(
f̂0 +

∑
j f̂j ẑj

)2 =
−2µf̂iẑk

f̂0 +
∑

j f̂j ẑj

We assumed earlier that −
∑

j f̂j ≤ f̂0. Since ẑ corre-
sponds to point in the simplex, ẑk ≥ −1, or −ẑi ≤ 1.
Thus,

∑

i∈L\{k}

∣∣∣∣
∂G(ẑ)k

∂ẑi

∣∣∣∣ =
2µ(−ẑk)

f̂0 +
∑

j f̂j ẑj

∑

i∈L\{k}

(−f̂i)

≤
2µ

f̂0 +
∑

j f̂j ẑj

f̂0 < 2µ

Using equation (7),

∂G(ẑ)k

∂ẑk
≤ (1 − 2µ)

The Gershgorin Circle Theorem shows that any eigenvalue
of the differential is less that 1. 2

Proof of Theorem 15: The relative error after t generations
is:

|Gt(0) − wfixed|

|wfixed|
=

∣∣∣−C(At−1)
A−1 − C

A−1

∣∣∣
C

A−1

= At

Further,

At < ε⇐⇒ t lnA < ln ε⇐⇒ t >
− ln ε

− lnA

Let x = 1/` and let

f(x) = − lnA = − ln

(
1 −

2α+ 1

`
+

2α

`

)

= − ln(1 − (2α+ 1)x+ 2αx2)

The first-order Taylor series with remainder for f about
x = 0 is

f(x) = (2α+1)x+
−8α2ξ − 4αξ + 8α2ξ2 + 4α2 + 1

(1 − (2α+ 1) ξ + 2αξ2)
2

x2

2

where 0 < ξ < x.

We claim that B = −8α2ξ− 4αξ+8α2ξ2 +4α2 +1 ≥ 0.
Make the substitution ξ = ψ + 2α+1

4α . Then the expression
becomes 8α2ψ2+ 1

2 (4α2−4α+1) which is clearly positive.

Thus, f(x) = (2α+ 1)x+B ≥ (2α+ 1)x, and

−` ln ε

1 + 2α
≥

− ln ε

(1 − 2α)
(

1
`

)
+B

(
1
`

)2 =
− ln ε

f
(

1
`

) =
− ln ε

− lnA

2

References

[1] H. Geiringer. On the probability of linkage in
mendelian heredity. Annals of Mathematical Statis-
tics, 15:25–57, 1944.

[2] Erwin Kreyszig. Advanced Engineering Mathemat-
ics. John Wiley and Sons, New York, third edition,
1972.

[3] Thilo Mahnig and Heinz Mühlenbein. Optimal muta-
tion rate using bayesian priors for estimation of distri-
bution algorithms. In K. Steinhüfel, editor, Stochastic
Algorithms: Foundations and Applications, LNCS.
Springer-Verlag, 2001.

[4] Heinz Mühlenbein. The equation for the response
to selection and its use for prediction. Evolutionary
Computation, 5(3):303–346, 1998.

[5] Heinz Mühlenbein and Thilo Mahnig. FDA – a scal-
able evolutionary algorithm for the optimization of
additively decomposed functions. Evolutionary Com-
putation, 7(4):353–376, 1999.

[6] Heinz Mühlenbein and Thilo Mahnig. Evolutionary
algorithms: from recombination to search distribu-
tions. In L. Kallel, B. Naudts, and A. Rogers, ed-
itors, Theoretical Aspects of Evolutionary Computa-
tion, pages 137–176. Springer Verlag, 2000.

[7] C. R. Stephens and H. Waelbroeck. Effective degrees
of freedom in genetic algorithms and the block hy-
pothesis. In Thomas Back, editor, Proceedings of the
Seventh International Conference on Genetic Algo-
rithms, pages 34–40, San Mateo, 1997. Morgan Kauf-
man.

[8] H. Voigt and H. Mühlenbein. Gene pool recombina-
tion and the utilization of covariances for the breeder
genetic algorithm. In Z. Michalewicz, editor, Proc. of
the 2nd IEEE International Conference on Evolution-
ary Computation, pages 172– 177, New York, 1995.
IEEE Press.

[9] M. D. Vose. The Simple Genetic Algorithm: Founda-
tions and Theory. MIT Press, Cambridge, MA, 1999.

[10] M. D. Vose and A. H. Wright. Form invariance
and implicit parallelism. Evolutionary Computation,
2001.

[11] A. H. Wright. The exact schema theorem. Technical
report, University of Montana, Missoula, MT 59812,
USA, 1999. http://www.cs.umt.edu/u/wright/.

