
Cyclic and Chaotic Behavior in Genetic Algorithms

Alden H. Wright
Computer Science Department

University of Montana
Missoula, MT 59812 USA

wright@cs.umt.edu

Alexandru Agapie
Laboratory of Computational Intelligence

Institute for Microtechnologies
Bucharest, PO Box 38-160, 72225 Romania

agapie@imt.pub.ro

Abstract

This paper demonstrates dynamical system mod-
els of genetic algorithms that exhibit cycling
and chaotic behavior. The genetic algorithm is
a binary-representation genetic algorithm with
truncation selection and a density-dependent mu-
tation. The density dependent mutation has a
separate mutation rate for each bit position which
is a function of the level of convergence at that
bit position. Density-dependent mutation is a
very plausible method to maintain diversity in
the genetic algorithm. Further, the introduction
of chaos can potentially be used as a source of
diversity in a genetic algorithm.

The cycling/chaotic behavior is most easily seen
in a 1-bit genetic algorithm, but it also occurs in
genetic algorithms over longer strings, and with
and without crossover.

Dynamical system models of genetic algorithms model
the expected behavior or the algorithm, or the behav-
ior in the limit as the population size goes to infinity.
These models are useful because they can show behav-
ior of a genetic algorithm that can be masked by the
stochastic effects of running a genetic algorithm with a
finite population. The most extensive development of
dynamical systems models has been done by Michael
Vose and coworkers. (See [Vose and Liepins, 1991],
[Vose and Wright, 1994] and [Vose, 1999] for examples.)
They have developed an elegant theory of simple genetic
algorithms based on random heuristic search. Heuristic
search theory is based on the idea of a heuristic map G,
which is a map from a population space to itself. The map
G includes all of the dynamics of the simple genetic algo-
rithm. The map defines a discrete-time dynamical system
which we call the infinite population model.

The simple genetic algorithm heuristic G is called focused
if G is continuously differentiable and if the sequence

p,G(p),G2(p), . . . converges for every p. In other words,
G is focused if every trajectory of the dynamical system
converges to a fixed point.

With one exception, infinite population models of ge-
netic algorithms always seem to converge to a fixed
point. The exception is the result of Wright and Bid-
well [Wright and Bidwell, 1997], who show stable cy-
cling behavior corresponding to very “weird” mutation and
crossover distributions that would never be used in prac-
tice. Cycling behavior has also been shown in biological
population genetics models [Hastings, 1981].

The random heuristic search model also leads in a natural
way to a Markov chain model where the states are (finite)
populations. Vose has a number of results that connect the
infinite population model to the finite population model in
the limit as the population goes to infinity. These theorems
assume that the heuristic G is focused. For example, he
shows that ([Vose, 1999], theorem 13.1), the probability of
being in a given neighborhood of the set of fixed points can
be made arbitrarily high by choosing the population size to
be sufficiently large.

Thus, there is a lot of interest in knowing whether the
heuristic that defines the infinite population model of a ge-
netic algorithm is focused. This paper gives numerical ex-
amples where the infinite population model of a genetic
algorithm exhibits stable cycling/chaotic behavior, which
implies that the heuristic is not focused.

We expect that the examples of this paper very well could
arise in practice if the mutation and selection described in
this paper was used. However, they are not examples of
the simple genetic algorithm in that a density-dependent
mutation scheme is used.

Chaotic behavior could also be useful for restoring diver-
sity in a run of a genetic algorithm that is not making
progress. When the GA seems to have converged, the pa-
rameters could be adjusted to introduce chaotic behavior,
which can move the algorithm from a local optimum.

We are aware of one other paper that discusses chaos (more
accurately fractals) and genetic algorithms. Juliany and
Vose [Juliany and Vose, 1994] generated fractals by deter-
mining the basins of attractions of fixed points of G

1 Notation

Let Ω be the search space of length ` binary strings, and let
n = 2`. For u, v ∈ Ω, let u ⊗ v denote the bitwise-and
of u and v, and let u ⊕ v denote the bitwise-xor of u and
v. Let u denote the ones-complement of u, and #u denote
the number of ones in the binary representation of u. Let
1 denote the string of ones (or the integer 2` − 1). Thus,
u = 1⊕ u.

Integers in the interval [0, n) = [0, 2`) are identified with
the elements of Ω through their binary representation. If
j ∈ Ω, we assume that j0 denotes the least significant
bit of the binary representation of j and j`−1 denotes the
most significant bit. However, when we write j as a binary
string, we will use conventional notation with the least sig-
nificant bit on the right.

This correspondence allows Ω to be regarded as the product
group

Ω = Z2 × . . .× Z2

where the group operation is ⊕. The elements of Ω corre-
sponding to the integers 2i, i = 0, . . . , `− 1 form a natural
basis for Ω.

A population for a genetic algorithm over length ` binary
strings is usually interpreted as a multiset (set with repe-
titions) of elements of Ω. A population can also be inter-
preted as a 2` dimensional incidence vector over the index
set Ω: if x is a population vector, where xi is the propor-
tion of the element i ∈ Ω in the population. This implies
that

∑

j xj = 1. For example, suppose that ` = 2 so that
Ω is identified with the set {0, 1, 2, 3}. Then the popula-
tion {0, 0, 2, 2, 3} is represented by the population vector p
where p0 = 2/5, p1 = 0, p2 = 2/5, and p3 = 1/5. We
would also write p = 〈2/5, 0, 2/5, 1/5〉T .

Let

Λ = {p ∈ Rn :
∑

i

pi = 1 and xi ≥ 0 for all i ∈ Ω}.

Thus any population vector is an element of Λ. Geomet-
rically, Λ can be interpreted as the n − 1 dimensional unit
simplex in Rn. Note that elements of Λ can be interpreted
as probability distributions over Ω.

If expr is a Boolean expression, then

[expr] =

{

1 if expr is true
0 if expr is false

If p is a population, i ∈ {0, . . . , `− 1}, and k ∈ {0, 1}, let

S(p, i, k) =
∑

j∈Ω

pj [ji = k].

In other words, S(p, i, k) is the relative frequency of popu-
lation elements whose ith bit has the value k. For example,
if ` = 2 and if p = 〈2/5, 0, 2/5, 1/5〉T is the example pop-
ulation described above, then S(p, 0, 0) = p0 + p2 = 4/5,
S(p, 0, 1) = p1 + p3 = 1/5, S(p, 1, 0) = p0 + p1 = 2/5,
and S(p, 1, 1) = p2 + p3 = 3/5. S(p, i, k) can be also in-
terpreted as the “schema average” of the schema with one
fixed position in position i where the value of that fixed
position is k.

In the random heuristic search model, a population-based
generational search algorithm over Ω is defined by a heuris-
tic function G : Λ→ Λ. Given a population of size r which
is represented by p ∈ Λ, the next generation population is
obtained by taking r independent samples from the proba-
bility distribution G(p). When the simple genetic algorithm
is modeled by random heuristic search, the heuristic func-
tion G can be represented as the composition of a selection
heuristic function F , and a mixing heuristic function M.
See [Vose, 1999] for more details. In this paper, we ex-
press G as G(p) = F ◦M(p), rather than the more usual
G(p) =M◦F(p).

2 Density-dependent mutation

One of the major practical difficulties in the practical
use of genetic algorithms is “premature convergence”.
The genetic algorithm population loses diversity be-
fore sufficient exploration is done to discover the solu-
tions of interest. A number of techniques have been
proposed to prevent or slow down premature conver-
gence. These include crowding [DeJong, 1975], sharing
[Goldberg and Richardson, 1987], and partial reinitializa-
tion [Eshelman, 1991].

In this section, we propose another method to avoid pre-
mature convergence, based on maintaining population di-
versity. The idea is to use a different mutation rate at each
string position, and this rate depends on the convergence
of the population at that string position. If a string posi-
tion is highly converged in a population, then a high muta-
tion rate will be used at that string position in the produc-
tion of the next generation. The theoretical justification of
this method can be found in [Leung et al., 1997]; building
on the concept of degree of population diversity, the au-
thors show that premature convergence on a chromosome
location (that is, the probability for allele loss on that po-
sition) decreases with population size and increases with
|m − 1/2| where m is the mutation rate. As we choose to
keep the population size fixed, the suggestion is straight-
forward: Use population diversity as a quantitative mea-

sure to prevent premature convergence by adaptively vary-
ing mutation probability. This also corresponds to the com-
plementing schema in case of stagnation procedure intro-
duced by [Agapie and Dediu, 1996] for solving deceptive
problems.

When there is a mutation rate at each string position, then
the process of mutation of a chromosome is to mutate the
loci of the chromosome independently. In other words, the
probability of flipping the bit at string position i is the mu-
tation rate mi at that string position.

Next, we show how this adaptive mutation rate can be ex-
pressed in the framework of the infinite population model.

Mutation can be described in terms of a probability distri-
bution over mutation masks. If j ∈ Ω is a binary string
and u ∈ Ω is a mutation mask, then the result of mutating
j using u is j ⊕ u. Since mutation masks are elements of
the search space, a probability distribution over mutation
masks is an element of Λ. Given such a probability dis-
tribution µ ∈ Λ, the corresponding mutation heuristic is
defined by

U(p)k =
∑

u∈Ω

∑

j∈Ω

µupj [u⊕ j = k] =
∑

j∈Ω

µk⊕jpj .

In the case where there is a mutation rate mi for each string
position,

µu =
`−1
∏

i=0

(1− ui −mi + 2uimi)

where ui denotes the bit value of u at string position i, i =
0, 1, . . . , `− 1. For example, if ` = 5 and u = 01001, then
µu = (1−m0)m1(1−m2)(1−m3)m4.

Under density-dependent mutation, the string position i
mutation rate mi is a function of the current population. In
particular, it is a function of the population bit frequencies
S(p, i, 0) and S(p, i, 1) at position i. A one way to define
such a function is to define a function r : [0, 1] → [0, 1/2]
with the property that r(1 − x) = r(x), and where r has a
minimum at x = 1/2 and maxima at x = 0, 1. Then we
define

mi = r(S(p, i, 0)) = r(S(p, i, 1)).

One particular family of such functions is defined by:

ra,b(x) = 2a−1b

∣

∣

∣

∣

x−
1

2

∣

∣

∣

∣

a

(1)

where a ≥ 1 and 0 ≤ b ≤ 1. Under this definition,
ra,b(0) = ra,b(1) = b/2 and ra,b(1/2) = 0. Thus, mi is
b/2 when position i has completely converged in the popu-
lation, and mi is zero when the bit values at position i have
equal frequency.

Figure 1 shows a graph of r4,1.

Figure 1: Mutation-adaptation rule: mutation increases
whenever diversity is low on a chromosome position.

3 Truncation selection

In this section we show how truncation selection can be
modeled by random heuristic search. Denote the popula-
tion size by r. Under classic truncation selection, a number
t with 0 < t < r is given. The the current population is or-
dered by fitness, and the t most fit individuals are selected
for reproduction. For simplicity, we assume that all indi-
viduals in the population have distinct fitnesses. The most
fit t individuals, when represented as a population vector
in Λ, define a probability distribution. Under our adapta-
tion of truncation selection to the random heuristic search
model, the population at the next step is formed by taking
r independent samples from this probability distribution.

This procedure can be defined as a selection heuristic.
Without loss of generality, we assume that Ω is ordered
so that f0 < f1 < . . . < fn−1, where fj denotes the fit-
ness of j ∈ Ω. Let T = t/r. Then the truncation selection
heuristic function FT : Λ→ Λ is defined by:

FT (p)k = (2)

0 if T <
∑

k<j pj

T−
∑

k<j
pj

T
if

∑

k<j pj ≤ T <
∑

k≤j pj

pk

T
if

∑

k≤j pj ≤ T.

(3)

It can be verified that this formula agrees with the above
procedure for every finite population size. An example will
be given in the next section.

4 The 1-bit GA case

We first show how to obtain cycling and chaos in the dy-
namical system model when the genetic algorithm repre-
sentation has only a single bit. In this case, the model is 1-
dimensional since a population p = 〈p0, p1〉

T can be com-
pletely described by p1 since p0 = 1−p1. Thus, we identify
Λ with [0, 1] under the correspondence 〈p0, p1〉 ←→ p1.
Our objective is to describe a heuristic function G : [0, 1]→
[0, 1] which describes one generation of the GA so that the
dynamical system determined by G exhibits stable cycling.

In the 1-bit case, the truncation selection heuristic defined
in the previous section reduces to the following:

FT (p1)1 =

{

1 if T < p1

p1

T
if p1 ≤ T.

In the 1-bit case, the mutation heuristic is:

U(p0, p1)0 = (1−m)p0 + mp1

U(p0, p1)1 = mp0 + (1−m)p1

where m is the mutation rate.

Reducing this to the one variable p = p1 gives

U(p) = m− (2m− 1)p = m(1− 2p) + p

If the ra,b function is used for density-dependent mutation,
then

Ua,b(p) = 2a−1b

∣

∣

∣

∣

p−
1

2

∣

∣

∣

∣

a

(1− 2p) + p

= p−
b

2
|2p− 1|a(2p− 1)

It can be verified that Ua,b is continuously differentiable
even when a = 1 and thus ra,b is not continuously differ-
entiable.

Since there is no crossover possible in the 1-bit case, the
heuristic that defines the 1-bit dynamical system describing
the genetic algorithm is Ga,b,T = FT ◦ Ua,b.

Figure 2 shows graphs of the selection heuristic FT for
T = 7/10 and the mutation heuristic Ua,b for a = 2 and
b = 1.

Figure 2: HeuristicsFT (selection) for T = 7/10, res. Ua,b

(mutation) for a = 2 and b = 1

Note that under our assumption that f0 < f1, if the maxi-
mum value of the mutation heuristic function U is less than
T , then the region where the selection heuristic has value

1 is never reached, and the GA heuristic Ga,b,T is continu-
ously differentiable.

We show later that the behavior of G undergoes a phase
transition as G goes from being continuously differentiable
to having a discontinuous derivative. Thus, it is of interest
to determine the conditions on a, b, and T that assure that
G is continuously differentiable.

Lemma 1 If T satisfies the condition

T ≥
1

2

(

1

b(a + 1)

)
1
a

(

a

a + 1

)

+
1

2

then G is continuously differentiable.

Proof.

As above, G is continuously differentiable if and only if the
maximum value of U is less than or equal to T . This max-
imum value will occur when p > 1/2, so we can drop the
absolute value from the the formula that defines U . Thus,

U(p) = p−
b

2
(2p− 1)a+1

Now we solve the equation ∂U
∂p

= 0.

∂U

∂p
(p0) = 0 ⇐⇒ (2p0 − 1)a =

1

b(a + 1)

⇐⇒ p0 =
1

2

(

1

b(a + 1)

)
1
a

+
1

2

Then we substitute p0 into U to obtain the maximum value
of U .

U(p0) =
1

2

(

1

b(a + 1)

)
1
a

+
1

2
−

b

2

(

1

b(a + 1)

)

a+1

a

=
1

2

(

1

b(a + 1)

)
1
a

(

a

a + 1

)

+
1

2

This value gives the minimum for T such that G is contin-
uously differentiable. 2

Figure 3 shows the area of (a, T) space where G is contin-
uously differentiable.

A fixed point z of a 1-dimensional continuously differen-
tiable discrete-time dynamical system y −→ g(y) is sta-
ble if |g′(z)| < 1 and is unstable if |g′(z)| > 1. The
system is focused if f is continuously differentiable and
if limt→∞ gt(y) converges for every starting point y. If
limt→∞ gt(y) = z and if g is continuous, then z is a fixed
point of g.

We can now give a more rigorous justification of stable
cyclic behavior of the dynamical system defined by G for
some specific values of the parameters.

0.6

0.65

0.75

0.8

0.85

T

0 2 4 6 8 10 12 14a

Figure 3: G is continuously differentiable in the region
above the curve.

For the above example with a = 2, b = 1, and T = 7/10,
the dynamical system defined by y −→ G(y) exhibits sta-
ble cycling. G has a single fixed point at z = 0.908430,
and G′(z) = −1.431114512, so the fixed point is unstable.
G2 = G ◦ G has three fixed points at 0.756838, 0.908430,
and 0.984383, and the derivative of G2 at these points are
−0.7721976, 2.0480887, and −0.7721976. Thus, G2 has
two stable fixed points that map to each other under G. This
demonstrates that G exhibits stable cycling of period 2. Fig-
ure 4 shows the graphs of the identity function, G, and G2

for a = 2, b = 1, and T = 7/10.

Figure 4: Heuristics G and G2 for a = 2, b = 1, T = 7/10

5 Empirical Results Using the Infinite
Population Model

We implemented the 1-bit and multi-bit infinite population
models in the MapleTMprogramming language. MapleTM,
along with other mathematical symbolic processing lan-
guages, allows for both symbolic processing and arbitrary
precision floating point computation.

To assure correctness of the code, we implemented the
models in several different ways (1-bit, multi-bit, with and
without the Walsh transform), and we cross-checked the
results of the different implementations.

5.1 The 1-bit case

For the 1-bit case, we produced what [Peitgen et al., 1992]
call final-state or Feignebaum diagrams. We used the fol-
lowing algorithm for a fixed value of the parameters a, T
and b.

1. Choose an initial value p0 at random from the interval
[0, 1].

2. Carry out 100 iterations to compute p1, p2, . . . , p100

using pn+1 = G(pn).

3. Carry out 200 more iterations to compute
p101, . . . , p300.

4. Plot p101, . . . , p300 on the diagram.

To produce a diagram, we fixed one of the a and T param-
eters and varied the other. The b parameter was fixed at
1. Figure 5 shows the diagram with T fixed at 7/8 and a
varying from 5 to 14 with an increment of 0.01. Figure 6
shows the diagram with a fixed at 4 and T varying from
0.6 to 0.99 in increments of 0.001. Both diagrams show
period-doubling approach to chaos as the a or T parameter
approaches the boundary of the region where G is continu-
ous. In the region where G is discontinuous, the behavior
seems to be mostly periodic, but with some chaotic devia-
tion from the period behavior for some parameter values.

0.6

0.7

0.8

0.9

1

p

6 8 10 12 14a

Figure 5: Final-state diagram for G heuristic for T = 7/8,
b = 1, and values of a from 5 to 14

These diagrams were generated with 100 digits of floating-
point precision. However, the diagrams look identical to

0.7

0.8

0.9

1

p

0.7 0.75 0.8 0.85T
Figure 6: Final-state diagram for G heuristic for a = 4,
b = 1, and values of T from 0.7 to 0.9

diagrams produced using 10 digits of floating-point preci-
sion. Lack of precision means that specific iterates may
not be computed correctly (due to the sensitivity of initial
conditions due to chaos), but the overall behavior is not af-
fected.

5.2 The multibit case

We also did a number of runs using 2-bit to 4-bit repre-
sentations, and using one-point and uniform crossover with
crossover rates from 0 to 1. The fitness function used as-
signed one plus the integer value of the binary representa-
tion of a string to that string. Thus, the fitness of the 3-bit
string 000 was 1, the fitness of 001 was 2, etc.

We found that the behavior of the multi-bit representation
models were qualitatively the same (e. g., same period of
cycling) as the 1-bit model for the same values of a and
T . The presence or absence of crossover and the crossover
rate did not affect the results. To be more specific, we ran
the model for the combinations of the a and T parameters
that are given table 1 for bit lengths of 2 to 4, for crossover
rate 1/2, and for both one-point and uniform crossover. To
check for cycling of period C, we ran for 100 iterations
with a random initial population, and then looked at the 1-
norm of the difference between the final population and the
population C iterations prior to the final iteration. To check
for chaos, we ran both an initial random population and a
small random perturbation of this initial random popula-
tion for 100 iterations, and looked at the 1-norm of the dif-
ference between the final populations. The cycling checks
were run with 50 decimal digit floating point precision and
the chaos checks were run with 100 digit floating point pre-
cision.

In the check for cycling, the maximum deviation (1-norm)
between the last population and the population C iterations
back was 1.3× 10−6, and in the check for chaos, a pertur-

bation of size approximately 10−50 grew to a difference of
at least 10−38 after 100 iterations.

T\a 4 6 8 10
3/4 10 3 3 3
5/6 2 Chaos 4 4
7/8 1 2 8 Chaos
9/10 1 1 2 4

11/12 1 1 1 2
13/14 1 1 1 1

Table 1: Cycle length or chaotic behavior for 1-bit to 4-bit
representations, for different values of the parameters a and
T

We did some experiments with the multibit model where
the parameters for the bits were set separately. When one
bit was set to give cycling behavior and the other bits had
a constant mutation rate, the model exhibited cyclic be-
havior of the same period as when all bits were set to
give cycling behavior. And when one bit was set to give
chaotic behavior and the remaining bits had constant mu-
tation, the model exhibited chaotic behavior. When bits
were set to give cyclic behavior of different periods where
the shorter periods were divisors of the longest period, and
where G was continuously differentiable, the longest pe-
riod resulted. When one bit was set with parameter values
that did not make G continuously differentiable and corre-
sponded to period 3, and other bits were set to give period
10, period 3 resulted.

6 Empirical Results Using A Finite
Population GA

We implemented the finite population genetic algorithm
that corresponds to the infinite population model described
above. To show how the behavior depends on the popula-
tion size, we did many runs of the case where r = 5/6 and
a = 4. As shown in table 1, the infinite population model
has cyclic behavior of period 2 in this case. As a test for
cyclic behavior, we looked at when the population average
fitness exhibited period 2 cyclic behavior. Let ft denote
the average population fitness at time t. We would say that
the GA has cyclic behavior at time t (over 4 generations)
if either ft−3 ≤ ft−2, ft−2 ≥ ft−1, and ft−1 ≤ ft; or if
ft−3 ≥ ft−2, ft−2 ≤ ft−1, and ft−1 ≥ ft . Note that the
probability of this happening for a given value of t for a
sequence of uniformly distributed random numbers is 1/4.

Table 6 shows the results of running the GA for 100 runs
for 1020 generations with population sizes 100, 250, 1000,
and 5000. The fitness function was the same as used for
the infinite population model. The string length was 50,
and 1-point crossover with a crossover rate of 1/2 was used.

Truncation selection was used with r = 5/6, and bitwise
density dependent mutation with a = 4 was used. The ta-
ble shows how many of the last 1000 generations exhibited
cyclic behavior as defined above.

These results show that the infinite population model makes
predictions about a finite population genetic algorithm that
can be verified with a population size of 100.

Population size 100 250 1000 5000
generations 660.8 804.4 968.0 1000.0
Standard error 18.1 16.5 8.7 0.0

Table 2: Number of generations exhibiting cyclic behavior
out of 1000

7 Conclusion

We have shown that introducing a bitwise density depen-
dent mutatation in conjunction with truncation selection
into a bit-representation genetic algorithm can cause the
infinite-population model of this genetic algorithm to ex-
hibit cyclic and chaotic behavior. As the mutation param-
eter increases, the model goes through a period-doubling
approach to chaos.

This work is significant for two reasons.

First, it shows that the very important Vose infinite pop-
ulation model can exhibit a qualitatively different kind of
behavior, namely chaos, than has been seen before.

Second, it demonstrates a new way to introduce diversity
into an evolutionary computation algorithm, namely the
cyclic and chaotic behavior shown in this paper. To follow
up on this, more work needs to be done on characterizing
the conditions under which cyclic and chaotic behavior can
occur.

Acknowledgements

This work was done while the second author was visiting
the University of Montana, supported by a COBASE grant
from the National Research Council, USA.

References

[Agapie and Dediu, 1996] Agapie, A. and Dediu, H.
(1996). GA for deceptive problems: Inverting schemata
by a statistical approach. In Proceedings IEEE Interna-
tional Conf. on Evolutionary Computation (ICEC’96),
pages 336–340, Nagoya, Japan. IEEE.

[DeJong, 1975] DeJong, K. A. (1975). An analysis of the
behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, MI.

[Eshelman, 1991] Eshelman, L. (1991). The CHC adaptive
search algorithm: how to have safe search while engag-
ing in nontraditional genetic recombination. In Rawl-
ings, G. J. E., editor, Foundations of genetic algorithms,
pages 265–283, San Mateo. Morgan Kaufmann.

[Goldberg and Richardson, 1987] Goldberg, D. E. and
Richardson, J. (1987). Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of
the Second International Conference on Genetic Algo-
rithms, pages 41–49, Hillsdale, N. J. Lawrence Erlbaum
Associates.

[Hastings, 1981] Hastings, A. (1981). Stable cycing in
discrete-time genetic models. Proc. Nat. Acad. Sci.
USA, 78:7224–7225.

[Juliany and Vose, 1994] Juliany, J. and Vose, M. D.
(1994). The genetic algorithm fractal. Evolutionary
Computation, 2(2):165–180.

[Leung et al., 1997] Leung, Y., Gao, Y., and Xu, Z. B.
(1997). Degree of population diversity - a perspective
on premature convergence in genetic algorithms and its
markov chain analysis. IEEE Trans. on Neural Net-
works, 8:1165–1176.

[Peitgen et al., 1992] Peitgen, H.-O., J:urgens, H., and
Saupe, D. (1992). Chaos and Fractals, New Frontiers
of Science. Springer-Verlag, New York.

[Vose, 1999] Vose, M. D. (1999). The Simple Genetic Al-
gorithm: Foundations and Theory. MIT Press, Cam-
bridge, MA.

[Vose and Liepins, 1991] Vose, M. D. and Liepins, G. E.
(1991). Punctuated equilibria in genetic search. Com-
plex Systems, 5:31–44.

[Vose and Wright, 1994] Vose, M. D. and Wright, A. H.
(1994). Simple genetic algorithms with linear fitness.
Evolutionary Computation, 4(2):347–368.

[Wright and Bidwell, 1997] Wright, A. H. and Bidwell,
G. L. (1997). A search for counterexamples to two con-
jectures on the simple genetic algorithm. In Foundations
of genetic algorithms 4, pages 73–84, San Mateo. Mor-
gan Kaufmann.

