Coarse Graining Selection and Mutation
posted 11/23/04
Jonathan E. Rowe
School of Computer Science
University of Birmingham
Birmingham B15 2TT
Great Britaink
J.E.Rowe@cs.bham.ac.uk
Michael D. Vose
Dept. of Computer Science
University of Tennessee
203 Claxton Complex
1122 Volunteer Blvd.
Knoxville, TN 37996-3450
USA
vose@cs.utk.edu
Alden H. Wright
Computer Science Dept.
Univ. of Montana
Missoula, MT 59812
wright@cs.umt.edu
(406) 243-4790
Abstract
Coarse graining is defined in terms of a commutative diagram.
Necessary and sufficient conditions are given in the continuously
differentiable case. The theory is applied to linear coarse grainings
arising from partitioning the population space of a simple Genetic
Algorithm (GA). Cases considered include proportional selection,
binary tournament selection, and mutation. A nonlinear coarse
graining for ranking selection is also presented. Within the context
of GAs, the primary contribution made is the introduction and
illustration of a technique by which the possibility for coarse
grainings may be analyzed. A secondary contribution is that a number
of new coarse graining results are obtained.