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Abstract

In the Infinite Population Simple Genetic Algorithm, stability of fixed points is
considered when mutation is zero. The analysis is based on the spectrum of the
differential of the mapping which defines the transition from one generation to the
next. Based on a simple formula for this spectrum, fully nondeceptive functions
having exponentially many non-optimal fixed points are constructed.

1 INTRODUCTION

This paper is concerned with properties of a function G (defined in the next section) which
can be regarded as answering the following fundamental questions for a simple genetic
algorithm:

1. What is the exact sampling distribution describing the formation of the next generation?

2. What is the expected next generation?

3. In the limit, as population size grows, what is the transition function which maps from
one generation to the next?

For each of these questions, the answer provided by G is exact. In a sense, G is a GA:
anything that ever could be proved about the simple genetic algorithm (for arbitrary pop-
ulation sizes, finite or infinite) corresponds to some property of G. It is not unnatural to
refer to G as the “Infinite Population Simple Genetic Algorithm” since, by answering the
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third question above, it is the transition function in the infinite population case. In terms
of a finite population GA, an alternate interpretation is that the sequence

x, G(x), G2(x), G3(x), . . .

is essentially the most probable transient behavior from initial population x when the pop-
ulation size is large. An introduction to various interpretations of G can be found in [2].

The relationship between the finite and infinite population GA (i.e., the connection between
the behavior of a finite population GA and what the corresponding relevant properties of G
are) is an active area of research. The most complete results to date can be found in [7].

The iterative procedure x, G(x), . . . is an example of a discrete dynamical system. A basic
goal in the theory of dynamical systems is to understand the nature of the sequence of
iterates. Fixed points, solutions to G(x) = x, frequently indicate destinations towards which
trajectories may converge. It is not known whether iterates of G converge for every initial
population x. The conjecture that this is the case is the fundamental conjecture.

Assuming the fundamental conjecture, fixed points represent populations towards which
an infinite population GA may evolve. Approximately the same may be said concerning a
large finite population GA, except being constrained to occupy points in population space
corresponding to its finite population size and being subject to stochastic effects (from
selection, crossover, and mutation) would keep it from converging. Fixed points nevertheless
locate regions within population space where a finite population GA spends much of its
time. Details concerning this type of connection between finite population behavior and
fixed points of G can be found in [5].

This paper is primarily concerned with the stability of fixed points. Roughly speaking,
a stable fixed point attracts neighboring populations, while an unstable fixed point tends
to repel them. An analogy is a pencil balanced on its tip. When truly balanced, it may
be stable in the sense of not moving, but the slightest perturbation is expected to send it
diverging towards quite a different state. A stable equilibrium is like a pendulum hanging
downwards and at rest. Small perturbations will not send it off on a divergent course. While
it is possible for a dynamical system to follow a trajectory leading to an unstable fixed point,
that is atypical behavior. The analysis in [7] indicates that with positive mutation, there is
a strong sense in which unstable fixed points may be ignored.

Although mutation has a more profound influence on GA behavior than is generally recog-
nized [8], it also complicates analysis. For this reason, the results we consider are for the
zero mutation case. Because of continuous dependence on parameters, our results may still
apply when the mutation rate is low. We also assume that strings have distinct fitness,
though the differences may be arbitrarily small.

An application of our stability analysis is in the last section, where “fully nondeceptive”
fitness functions are constructed for which G has exponentially many stable fixed points.
The point is not the well known fact that functions may be difficult for a GA even when they
are fully nondeceptive (see sections 5 through 7 of [4] for a discussion of various GA failure
modes). The purpose is to illustrate our theoretical results with a concrete application. The
particular example is important by establishing just how bad things can get; it is extremal
in the sense of having the maximum possible number of stable suboptimal attractors.



2 BASICS

We consider a generalization of the infinite population model of the Simple Genetic Algo-
rithm introduced in [6]. The domain Ω is the set of length ` binary strings. Let n = 2` and
note that elements of Ω correspond to integers in the range [0, n). They are thereby thought
of interchangeably as integers or as bit strings which are regarded as column vectors. Be-
cause of frequent use, it is convenient to let 1 denote the vector n − 1 (which is the vector
of all ones).

Let ⊕ denote the bitwise exclusive-or operation, and let ⊗ denote the bitwise and operation
on Ω. For x ∈ Ω, the ones-complement of x is denoted by x. Note that x = 1 ⊕ x.

If expr is an experssion that is either true or false, then

[expr] =

{

1 if expr is true
0 otherwise

Let δij = [i = j]. The n × n permutation matrix whose i, j th entry is δi⊕k,j is denoted by
σk. Note that (σkx)i = xi⊕k. The j th column of the n× n identity matrix is the vector ej .
Indexing of vectors and matrices begins with 0.

A population is a real-valued vector x indexed over Ω, where
∑

xi = 1 and xi ≥ 0. The
probability (or proportion) of string i in population x is xi. The set of all populations is
the unit simplex Λ in Rn. The vertices of Λ correspond to populations consisting entirely
of one string type.

A n× n mixing matrix M implements mutation and crossover. M is defined so that xT Mx
is the probability that the result of doing crossover and mutation based on population x is
0. Thus Mi,j is the probability that 0 is the result produced by parents i and j.

Since this paper only considers zero mutation, we define M for that special case (the general
formula can be found in [9]). Considering k ∈ Ω as a crossover mask used with parents
i, j ∈ Ω, the children are (i⊗ k)⊕ (j ⊗ k) and (j ⊗ k)⊕ (i⊗ k). We assume one child is kept
(with equal probability). If χ

k denotes the probability that mask k is used, then M is given
by

Mi,j =
∑

k∈Ω

χ
k + χ

k

2
[(i ⊗ k) ⊕ (j ⊗ k) = 0]

The twist of an n × n matrix A, denoted by A∗, has entries (A∗)i,j = Ai⊕j,i.

Proposition 2.1 The matrix M∗ is upper triangular.

Proof: If i⊗j 6= 0, then either i⊗j⊗k 6= 0 which implies i⊗k 6= 0, or i⊗j⊗k 6= 0
which implies j ⊗ k 6= 0. In either case (i ⊗ k) ⊕ (j ⊗ k) 6= 0 and hence Mi,j = 0.

Thus, (M∗)i,j = Mi⊕j,i can be nonzero only when (i⊕j)⊗i = 0, which is equivalent
to j ⊗ i = 0, which implies j ≥ i.

The recombination function M : Λ −→ Λ is defined by the component equations

eT
i M(x) = (σix)T Mσix =

∑

u,v

xuxvMu⊕i,v⊕i



Proposition 2.2 The differential of M at x ∈ Λ is given by dMx = 2
∑

u σuM∗σuxu.

Proof: First note that (σuM∗σu)i,j = Mi⊕j,u⊕i. Next, the i, j th entry of dMx is

∂

∂xj

∑

u,v

xuxvMu⊕i,v⊕i =
∑

u,v

(δu,jxv + δv,jxu)Mu⊕i,v⊕i = 2
∑

u

xuMi⊕j,u⊕i

Assuming a fitness function f : Ω −→ R+, proportional selection is the mapping from Λ
into Λ defined by x 7→ Fx/1T Fx, where F is the n × n diagonal matrix Fi,j = δi,jf(i).

The Infinite Population Simple Genetic Algorithm is defined as the mapping G : Λ −→ Λ
where

G(x) = M(Fx/1T Fx)

As indicated in the introduction, an infinite population GA can be defined in a very natural
way via the limit of a finite population GA as population size increases. It follows that
such a GA is deterministic (the stochastic variations average out as the population size
grows) and the next generation is given by the expected next generation. This expected
next generation, given current population x, is given by G(x) as defined above.

Proposition 2.3 The differential of G at x ∈ Λ is given by

dGx =
1

1T Fx
dM F x

1T
F x

FP where P = I − x
1T F

1T Fx

Proof: The differential of h(x) = x/1T x is

dhx =
I

1T x
− x

1T

(1T x)2

Applying the chain rule to G = M◦ h ◦ F yields

dGx = dMh◦Fx dhFx F

Since dhFxF = FP/1T Fx, the formula for the differential follows.

3 THE SPECTRUM OF dG

A fixed point x ∈ Λ of G is stable if for any neighborhood U of x, there is a neighborhood
V of x such that for each q ∈ V the trajectory q,G(q),G2(q), . . . lies in U . The fixed point
x is asymptotically stable if it is stable and all trajectories beginning in some neighborhood
of x converge to x.

The spectral radius of a square matrix A, denoted by ρ(A), is the largest modulus of the
eigenvalues of A. A standard result of dynamical systems theory is that (for any differen-
tiable map G) if x is a fixed point of G and ρ(dGx) < 1, then x is asymptotically stable,
where G considered as a map from Rn into itself. Moreover, x is unstable if the spectral
radius is greater than 1 (see [1], for example). Therefore information about the spectrum of
dGx (its set of eigenvalues) is important to the stability of a fixed point x.



Lemma 3.1 The matrix σkFσk − e0f
T σk is diagonal except for row 0.

Proof: The matrix σkFσk is diagonal, and e0f
T σk is nonzero only in row 0.

Lemma 3.2 The matrix σkdGek
σk is given by 2

fk

M∗(σkFσk − e0f
T σk).

Proof: We will apply Proposition 2.3 at x = ek. First note that 1T F = fT ,
Fx = fkek, and 1T Fx = fk. Thus

σkFPσk = σkFσk − σkekfT σk = σkFσk − e0f
T σk

By Proposition 2.2,

dMek
= 2

∑

(ek)iσiM∗σi = 2σkM∗σk

so that σkdMek
σk = 2M∗. Appealing to proposition 2.3 gives

σkdGek
σk =

1

fk

(σkdMek
σk)(σkFPσk) =

2

fk

M∗(σkFσk − e0f
T σk)

Corollary 3.3 If mutation is zero, the matrix D = σkdGek
σk has the following properties:

1. Column 0 of D is zero.

2. D is upper triangular, with diagonal Di,i = fk⊕i

fk

∑

u(χu + χ
u)[u ⊗ i = 0] for i > 0.

3. Row 0 of D is nonpositive (i.e., D0,j ≤ 0 for 1 ≤ j < n).

4. The other rows of D are nonnegative (i.e., Di,j ≥ 0 for 1 ≤ i < n, i ≤ j < n).

Proof: By Proposition 2.1, M∗ is upper triangular. By Lemma 3.1, so too is
σkFσk − e0f

T σk. The product of upper triangular matrices is upper triangular.
Hence, by lemma 3.2, D is upper triangular.

The 0,0 th entry of both σkFσk and e0f
T σk is fk, hence their difference is zero.

Thus, column 0 of σkFσk − e0f
T σk is zero which, by lemma 3.2, implies column 0

of D is zero.

By lemma 3.2, D0,j = 2((M∗)0,j − (M∗)0,0)fj⊕k/fk = 2(Mj,0 − M0,0)fj⊕k/fk for
j > 0. But M0,0 = 1 and Mj,0 ≤ 1, so this quantity is nonpositive.

By lemma 3.2, Di,j = 2(M∗)i,jfk⊕j/fk = 2Mi⊕j,ifk⊕j/fk for j ≥ i > 0, and this
quantity is nonnegative. The diagonal entries are 2M0,ifk⊕i/fk for i > 0.

Theorem 3.4 If mutation is zero, then the spectrum of dGek
is given by:

spec(dGek
) =

{

fi⊕k

fk

∑

u

(χu + χ
u)[u ⊗ i = 0] : i = 1, 2, . . . , n − 1

}

⋃

{0}

Proof: Since the spectrum is invariant under conjugation, the spectrum of dGek

is the same as that of σkdGek
σk. The spectrum of a triangular matrix is the set of

diagonal entries. These entries are given by Corollary 3.3.



4 STABILITY IN THE SIMPLEX

Theorem 3.4 can be used to compute ρ(dGek
) and thus characterize the stability at ek of G

as a map from Rn to Rn. One might wonder however if a fixed point of G could be unstable
in this sense, but stable when the domain of G is restricted to Λ. Among other things, this
section shows that cannot happen.

Before proceeding, we review some facts concerning the Jordan canonical form. A m × m
simple Jordan submatrix is identical to a constant times the identity matrix, except that
the subdiagonal consists of 1’s. For example,





a 0 0
1 a 0
0 1 a





is a 3 × 3 simple Jordan submatrix. Given any square matrix A, there exists a similarity
transformation P such that J = P−1AP is in Jordan canonical form: it is block diagonal
with simple Jordan submatrices along the diagonal. The diagonal entries of a block are
eigenvalues and the columns of P corresponding to the columns occupied by a block (in J)
form a basis for a space invariant under A.

We apply the Jordan canonical form to dGek
, dividing the simple Jordan blocks into two

categories: stable blocks corresponding to eigenvalues λ with |λ| ≤ 1, and unstable blocks
corresponding to eigenvalues λ with |λ| > 1. The columns of P (the matrix of the similarity
transformation) corresponding to stable blocks form a basis for the stable space S. The
columns corresponding to unstable blocks form a basis for the unstable space U . Thus
Rn is decomposed into the direct sum of S and U , and each is invariant under dGek

. Let
πS : Rn −→ S and πU : Rn −→ U be the projections into these subspaces.

Let ‖ · ‖S and ‖ · ‖U denote norms on S and U respectively. Given θ > 0, we define the
s-region r(θ) = {x ∈ Rn : ‖πS(x)‖S < θ‖πU (x)‖U}. Note that r(θ) depends on the choice
of norms on U and S as well as on the parameter θ.

Theorem 4.1 Let x be a fixed point of f : Rn −→ Rn such that ρ(dfx) > 1. Let U and S
be the unstable and stable spaces corresponding to the differential dfx. For all θ > 0, there
exist norms on S and U and a corresponding s-region r(θ) such that if V is a sufficiently
small neighborhood of x, then y ∈ V ∩ (x + r(θ)) implies that f i(y) /∈ V for some i.

Proof: We first choose appropriate norms. Let DS = dfx|S and let DU = dfx|U .
Then ρ(DS) ≤ 1 and all eigenvalues of DU are greater than 1 (thus DU is invertible
and ρ(D−1

U ) < 1). Choose norms ‖ · ‖S and ‖ · ‖U so that ‖D−1

U ‖U = β−1 < 1 and
‖DS‖S = α < β (see for example [1]). It follows that ‖dfxs‖S = ‖DSs‖ ≤ α‖s‖S

and ‖dfxu‖ = ‖DUu‖U ≥ β‖u‖U for all s ∈ S, u ∈ U . Define the norm ‖ · ‖ on Rn

by ‖x‖ = ‖s + u‖ = ‖s‖S + ‖u‖U . These norms will be assumed throughout the
rest of the proof, and their subscripts will be dropped to streamline notation.

The next step is to show that for any θ > 0, there exists a neighborhood V of x
such that if y ∈ V ∩ (x + r(θ)) then f(y) ∈ x + r(θ).

Suppose y ∈ V ∩ (x + r(θ)) and let y − x = s + u where s ∈ S and u ∈ U . By the
definition of the differential, f(y)−x = dfx(y−x)+o(y−x) = dfxs+dfxu+o(y−x).



Choose η > 0 such that αθ+(θ+1)η ≤ θ(β−(θ+1)η). Now choose the neighborhood
V sufficiently small that y ∈ V =⇒ ‖o(y − x)‖ < ‖y − x‖η. It follows that

‖πS(f(y) − x)‖ ≤ ‖dfxs‖ + ‖πS (o(y − x))‖

≤ α‖s‖ + (‖s‖ + ‖u‖)η

≤ αθ‖u‖ + (θ‖u‖ + ‖u‖)η

≤ ‖u‖(αθ + (θ + 1)η)

≤ θ‖u‖(β − (θ + 1)η) by the choice of η

≤ θ(‖u‖β − (‖s‖ + ‖u‖)η)

≤ θ(‖dfxu‖ − ‖y − x‖η)

≤ θ(‖dfxu‖ − ‖πU (o(y − x))‖)

≤ θ‖πU (f(y) − x)‖

Finally, we show that if y ∈ V ∩ (x + r(θ)) then f t(y) /∈ V for some t. Otherwise,
the trajectory y, f(y), f2(y), . . . lies in V ∩ (x + r(θ)) by what has already been
shown. Applying ‖πU (f(y) − x)‖ ≥ ‖u‖(β − (θ + 1)η) (which follows from the
inequalities above) we conclude that ‖πU (fk(y)− x)‖ ≥ ‖u‖(β − (θ + 1)η)k for all
k. Since η may be chosen so that β − (θ + 1)η > 1, this contradicts that V is a
bounded neighborhood.

Lemma 4.2 For i 6= k, if fi

∑

u(χu + χ
u)[u ⊗ (i ⊕ k) = 0] > fk then the stable space of

dGek
does not intersect {p ∈ Λ : pi > 0} − ek.

Proof: Abbreviate σkdGek
σk by D and let p ∈ Λ be such that pi > 0. We first

show eT
i dGek

(p−ek) > eT
i (p−ek). By assumption, Di⊕k,i⊕k > 1 (see corollary 3.3).

eT
i dGek

(p − ek) = eT
i σk(σkdGek

σk)σk(p − ek)

= (σkei)
T D(σkp − e0)

= eT
i⊕kDσkp − eT

i⊕kDe0

By Corollary 3.3, column 0 of D is zero. Hence eT
i⊕kDe0 = 0. The term corre-

sponding to u = i ⊕ k in

eT
i⊕kDσkp =

∑

u

Di⊕k,upu⊕k

is Di⊕k,i⊕k pi, which is greater than pi (since Di⊕k,i⊕k > 1). The remaining terms
are nonnegative since row k⊕i of D is. This establishes eT

i dGek
(p−ek) > eT

i (p−ek).

Applying this inequality recursively yields eT
i dGj

ek
(p − ek) > eT

i (p − ek) for all j.
Thus p − ek can not lie in the stable space of dGek

.

We say a fixed point p of G : Λ −→ Λ is unstable if there exists a relative neighborhood1 V
in Λ of p such that for any neighborhood V ′ of p, there exists a q ∈ V ′ and an integer t such
that Gt(q) /∈ V .

1A relative neighborhood of p in Λ is the intersection of a neighborhood of p in Rn with Λ.



Theorem 4.3 If the spectral radius of dGek
is greater than 1, then ek is an unstable fixed

point of G, considered as a map from Λ to Λ.

Proof: We use the same notation and conventions as in the proof of Theorem 4.1.
By Lemma 4.2, the translate by ek of the stable space of dGek

does not intersect
the interior of Λ. Choose norms for Rn as in the proof of Theorem 4.1 and let
p − ek = s + u where p is in the interior of Λ. Then ‖u‖ > 0 and p ∈ ek + r(θ) for
some θ. Now for sufficiently small δ with δ(p − ek) + ek ∈ V , there exists t such
that Gt(δp) /∈ V (here V is the neighborhood given by Theorem 4.1).

The importance of theorem 4.3 is that if ρ(dGek
) > 1, then populations arbitrarily close to

ek are expected to follow an evolutionary trajectory moving away from ek. In fact, the proof
shows all near by interior points of Λ are expected to behave in this way.

It appears as though the stability analysis just presented covers only the fixed points of G
found at vertices of Λ. However, when mutation is zero, we do not know of any examples
where stable fixed points are not at vertices.

Conjecture 4.4 If mutation is zero, the only stable fixed points of G are at vertices of Λ.

The basin of attraction of a fixed point x is the set of points whose trajectories converge
to x. A fixed point is hyperbolic if the differential has no eigenvalues of modulus 1. For
hyperbolic fixed points, the Stable Manifold Theorem shows that the translate of the stable
space of the differential is tangent to the basin of attraction of x. Recall that Lemma 4.2
shows the translate of the stable space of the differential does not intersect the interior of
Λ. This motivates the following generalization.

Conjecture 4.5 If mutation is zero, the basin of attraction of an unstable vertex fixed point
of G does not intersect the interior of the simplex.

5 APPLICATIONS

In this section we specialize the formula of Theorem 3.4 to one-point and uniform crossover.
Then an example is given of a “fully nondeceptive” fitness function that has exponentially
many stable fixed points.

For one-point crossover, the crossover mask probabilities are

χ
u =







1 − χ if u = 0
χ/(` − 1) if u = 2k − 1 for some integer k,1 ≤ k < `
0 otherwise

where χ is the crossover rate. For uniform crossover, the crossover mask probabilities are
given by χ

u = δu,0(1−χ)+χ/n. Here χ is used both as a vector, to specify the probability χ
i

that crossover mask i si used, and as a scalar, to specify the crossover rate. This overloading
of χ does not take long to get used to because context makes its meaning clear.

For i 6= 0, let lo(i) and hi(i) be the smallest and largest k such that i⊗2k 6= 0. Note that lo(i)
and hi(i) are the smallest and largest nonzero bit positions in i. Define δ(i) = hi(i)−lo(i)+1.
The following lemma is a special case of a formula proved by Gary Koehler [3].



Lemma 5.1 For i 6= 0 and one-point crossover,

∑

u

(χu + χ
u)[u ⊗ i = 0] = 1 − χ + χ` − δ(i)

` − 1

Lemma 5.2 For i 6= 0 and uniform crossover,
∑

u

(χu + χ
u)[u ⊗ i = 0] = 1 − χ + χ21−|i|

where |i| = 1T i is the number of nonzero bits in i.

Proof: The cardinality of the set {u : u ⊗ i = 0} is 2`−|i|. If i 6= 0, then the sets
{u : u ⊗ i = 0} and {u : u ⊗ i = 0} are disjoint. Hence their union has cardinality
2`−|i|+1. Thus

∑

u

(χu + χ
u)[u ⊗ i = 0] = 1 − χ + 2`−|i|+1χ/n

Two schema are said to be competing if they have the same fixed positions but different
fixed bits. Let S1 and S2 be competing and suppose S1 contains the maximum. A fitness
function has been called fully nondeceptive if for every such pair, S1 has the higher average
fitness. We now give a family of fully nondeceptive fitness functions which have 2`−1 stable
fixed points.

If |k| is even (i.e., k has even parity), let fk = a, and if |k| is odd, let fk = b where
a > b > 0. Any schema with more than one element contains equal numbers of even and
odd parity strings. Hence, all nontrivial schemata have equal average fitness. Now modify
f to fk = a + c(` − |k|) for even parity k. If c > 0 then 0 is the unique point of maximum
fitness and f is fully nondeceptive. Under appropriate choice of a, b, and c, this function
will have the required properties.

For any crossover type, define

h = max
|i|>1

∑

(χu + χ
u)[u ⊗ i = 0]

In the case of one-point crossover, h = 1 − χ/(` − 1). For uniform crossover, h = 1 − χ/2.

Proposition 5.3 If 0 < c < a
`
( 1

h
− 1), then f as defined above is fully nondeceptive. If |k|

is even, then ek is a stable fixed point of G given any crossover for which h < 1.

Proof: The function f is fully nondeceptive by construction. If |k| is even and
|i| > 1, then

fi⊕k

fk

∑

u

(χu + χ
u)[u ⊗ i = 0] ≤

a + c `

a
h < 1

If |k| is even and |i| = 1, then |k⊕ i| is odd, fk⊕i = b < a = fk, and the summation
above is 1. These considerations together with Theorem 3.4 show ρ(dGek

) < 1.
Hence ek is stable.



The next proposition shows that if fitnesses are distinct then 2`−1 is the maximum possible
number of stable fixed points.

Proposition 5.4 Suppose |j ⊕ k| = 1 (j and k differ by exactly one bit). If fj 6= fk, then
at most one of ej and ek is stable.

Proof: Without loss of generality, assume fj > fk. Let i = j ⊕ k and consider the

eigenvalue of dGek
given by fi⊕k

fk

∑

u(χu + χ
u)[u ⊗ i = 0]. Since the summation is

1, the eigenvalue is fj/fk > 1, and ek can not be stable.

6 CONCLUSION

In the case of no mutation, we have defined G, the infinite population Simple Genetic Algo-
rithm. We have produced a formula for the spectrum of dG that allows the determination
of the stability of fixed points at vertices of Λ. Fixed points are important because they
represent populations towards which populations may evolve. When a fixed point p is sta-
ble, one would expect a GA could become trapped there. If p were unstable, it would be
less likely that convergence to p would take place (for large populations).

Even though our method applies only to vertex fixed points (populations consisting of a
single string type), we believe that all stable fixed points are in fact vertices when mutation
is zero and fitnesses are distinct. We have made related conjectures concerning these matters
(see conjectures 3.4 and 3.5) which identify important open questions.

In the final section, our analysis is applied to construct functions which are – from a “static
schema analysis perspective” – totally easy, yet have exponentially many suboptimum sta-
ble fixed points. We also show these functions to be extremal in the sense of having the
maximum number of stable fixed points possible.
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